Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: Math I

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al , Arab University College	
2. Department / Center	Computer Technology Engineering	
3. Course Title /Code	FUND 9101/ Math I	
4. Type of Teaching	(Electronic/Attendance) Three hours a week	
5. Academic Year /Term	Biannual	
6. Total No. of Teaching Hours	90 hours	
7. Date f Preparing this Course	11/7/2022	
Description		

9. Course Objectives

Preparing a conscious generation that possesses abundant information in mathematics capable of solving complex mathematical laws useful in engineering in general and in electronic circuits

Finding solutions to complex differential equations by using more than one method of solving

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

A1 - Knowledge of the basics of mathematics and distinguish the basic principles of states and their goals.

A2. Solution of derivatives and knowledge of their applications

A3- Calculus solution and knowledge of methods for solution

A4. Fundamentals of Matrices

A5. Solving linear equations

(B) Skill Objectives Related to the Program:

B1 – Identify mathematical problems and determine how to solve

B2 – Application of mathematical analysis and the use of the basics of mathematics for the solution

B3 – Analysis of the results and their interpretation using evidence and fundamentals of mathematics

B4- Linking the theoretical aspect with discussions and how to use

mathematical laws and rules to solve complex mathematical problems

Methods of Teaching and Learning

Lectures

Discussions between different student groups on the application of theories to solve mathematical problems

Create workshops and theoretical presentation on how to use the basics of mathematics to limit simple and complex electrical and electronic circuits Use multiple means to increase understanding and clarification

Discussions and extracurricular assignments to increase understanding of mathematical and applied examples used in applications and electronic circuits

Methods of Evaluation

Quarterly exams Quizzes Other extra-curricular tests

(C) Sentimental and Value Objectives

A1 - Promote thinking and cultivateethical responsibility to learn and think about a set of protective solutions to solve mathematical problems and how to analyze electronic circuits

C2 - Develop the thinking strategy of the student to analyze electronic circuits in different forms

C3. Self-esteem and self-esteem through meaningful discussions

C4 - Develop the strategy of developing the correct mathematical proofs to prove the validity of solutions and their shortness and how to solve in a simple way so that electronic circuits can be made effective and do not need unavailable resources

Methods of Teaching and Learning

Quarterly and final exams where the total of the first and second semester (40 degrees) while the final exam is (60 degrees)

Methods of Evaluation

Tests of various kinds Duties Learning matrix by presenting the results and discussing them with the participants in the discussion Reports & Studies

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

D1 - Communication skills and put forward mathematical ideas and various solutions in a civilized form away from intolerance

D2 - Analysis, investigation and comparison to reach a conclusion through the evidence of the sport

D3 - Flexibility in dealing and respect for time

D4. Teamwork

and personal development).

11. Course Structure

Al , Week	Hours	Require d Learnin g Outcom es	Name of the unit and/or subject	Method of educatio n	Evaluation Method
1			Matrices, Determinants & Grammar's Rule.	Lectures	spc
2			Matrices, Determinants & Grammar's Rule.	Lectures	Vetho
3			Matrices, Determinants & Grammar's Rule.	Lectures	tion N
4			Scalars + Vectors, Component of Vector,	Lectures + Case Study	ng to Evalua
5		e	Vector Algebra, Dot Product, Orthogonal Vectors,	Lectures	cordi
6		ortano	Cross Product, Vector Calculus	Lectures	on Ac
7	per week	and impo	Limits, Theory of Derivative & Chain Rule. Derivative of Trigonometric Function	Lectures	t Evaluati
8	3 hours	Concept	Limits, Theory of Derivative & Chain Rule. Derivative of Trigonometric Function	Lectures	Differen

9	Limits, Theory of Derivative & Chain Rule.	Lectures	
	Derivative of Trigonometric Function		
10	Inverse Trigonometric Functions.	Lectures	•
	Exponential Function Derivative.	+ Case	
	Inverse Trigonometric Functions.	Study	
11	Inverse Trigonometric Functions.	Lectures	
	Exponential Function Derivative.		
	Inverse Trigonometric Functions.		
12	Inverse Trigonometric Functions.	Lectures	
	Exponential Function Derivative.		
	Inverse Trigonometric Functions.		
13	Derivative of Logarithmic Function	Lectures	
	Derivative of Logarithmic Function, Applications.		
14	Derivative of Logarithmic Function	Lectures	
	Derivative of Logarithmic Function, Applications.		
15	Derivative of Logarithmic Function	Lectures	
	Derivative of Logarithmic Function, Applications.		
16	Derivatives of Hyperbolic Function	Lectures	
	The Inverse of Hyperbolic Functions,		
	Application of Differentiation		
17	Derivatives of Hyperbolic Function	Lectures	
	The Inverse of Hyperbolic Functions,		
	Application of Differentiation		
18	Derivatives of Hyperbolic Function	Lectures	

		The Inver	se of Hyperbolic Functions,		
		Applicatio	on of Differentiation		
19		Theory of	Integration (Area Problems)	Lectures	
		The Defin	ite + Indefinite Integrals		
		Integral o	f Trigonometric Functions		
		Integral o	f Inverse Trigonometric Functions.		
20		Theory of	Integration (Area Problems)	Lectures	
		The Defin	ite + Indefinite Integrals		
		Integral o	f Trigonometric Functions		
		Integral o	f Inverse Trigonometric Functions.		
21		Theory of	Integration (Area Problems)	Lectures	
		The Defin	ite + Indefinite Integrals		
		Integral o	f Trigonometric Functions		
		Integral o	f Inverse Trigonometric Functions.		
22		Theory of	Integration (Area Problems)	Lectures	
		The Defin	ite + Indefinite Integrals		
		Integral o	f Trigonometric Functions		
		Integral o	f Inverse Trigonometric Functions.		
23	-	Integral o	f Exponential Functions Integral of	Lectures	
		Logarithm	nic Functions	+ Case	
		Integratio	on by Parts	Study	
24		Integral o	f Exponential Functions Integral of	Lectures	
		Logantini			
		Integratio	on by Parts		

25	Integral of Exponential Functions Integral of Logarithmic Functions	Lectures	
	Integration by Parts		
26	Integral of Exponential Functions Integral of Logarithmic Functions	Lectures	
	Integration by Parts		
27	Application of Definite Integrals (Area)	Lectures	
	Volumes & Length of Plane Curve.		
	Application of Approximation		
28	Application of Definite Integrals (Area)	Lectures	
	Volumes & Length of Plane Curve.		
	Application of Approximation		
29	Application of Definite Integrals (Area)	Lectures	
	Volumes & Length of Plane Curve.		
	Application of Approximation		
30	Application of Definite Integrals (Area)	Lectures	
	Volumes & Length of Plane Curve.		
	Application of Approximation		

12.Infrastructure

1- Required textbooks	Thomas, Calculus by Anton , Bivens and Davis
2- Key References (Sources)	Calculus I.Advanced Engineering Mathematics by Alan Jeffrey.

^j) Recommended books and references (scientific journals, reports,)	
ب) Electronic References, Web Sites,	Engineering Mathematics tutorials

13. The Plan of Improving the Course

Add vocabulary to the curricula within the development of the course and by more than 5%

Add new and up-to-date sources

Include blended learning and increase the number of hours of the curriculum

Add a number of extra-curricular hours