Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: Foundations of Electrical Engineering

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al-Arab University College
2. Department / Center	computer technology engineering
3. Course Title /Code	FUND 9104/ Foundations of Electrical Engineering
4. Lecturer Name	Weekly/2 theory + 1 practice + 3 practical
5. Type of Teaching	midterm
6. Academic Year /Term	180 hours / every week 6 hours
7. Total No. of Teaching Hours	7/11/2022
8. Date f Preparing this Course	Shatt Al-Arab University College
Description	

9. Course Objectives

A- Cognitive goals
A1- Knowing the basics of electronic circuits, distinguishing all the physical components and their
work, and knowing the basic principles.
A2- Solving complex electronic engineering problems through the use of technology and deduction of
alternative parts
A3- Understand the engineering principles of the interconnection process, such as parallel and series
with the power transmission process

A4- Calculation of voltage, current and power in all electrical circuits

A5- Distinguish the types of pieces and indicate how to draw them and know the capacity of each piece such as resistors, capacitors, etc.

A6- Calculates the power consumed in the circuit, the power derived from the source, and the maximum power transferred to the load

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

B - Skills objectives of the course

B1 - Identify complex problems in electronic circuits and determine how to solve them.

B2 - Applying engineering analysis and knowing the appropriate voltage and current for each electronic part

B3 - Knowledge of measuring devices and training in them, with knowledge of electronic parts and the differences between them

B 4- Linking the theoretical aspect with discussions and how to use tools to extract electronic circuits that are not available and cannot be obtained in the labor market

B - Skills objectives of the course

(B) Skill Objectives Related to the Program:

a. Scientific Skills

b. Leadership Skills

c. Skills Related to Administrative Work Challenges

Methods of Teaching and Learning

Study lectures

Discussions between different student groups on the application of theories and basics of electricity and the use of various electrical devices available to understand the components of materials

Establishing workshops and theoretical presentation on how to use the basics of engineering to build simple and complex electrical and electronic circuits

The use of multiple means to increase understanding and clarification through engineering analysis and to prove it through the devices available in the laboratory

Extra-curricular discussions and assignments to increase understanding in applications and electronic circuits

Methods of Evaluation

Semester exams and periodic process

Quizzes

Other extra-curricular exams

Semester exams and periodic process

(C) Sentimental and Value Objectives

C- Emotional and moral goals

C1- Enhancing thinking and planting the responsibility of the engineering profession

C2 - Using the basics of engineering and computers to support the country's economy and infrastructure development.

C 3- Respect for self and others through discussions aimed at improving engineering and technical skills with full knowledge of the latest various programs

C4 - Developing modern engineering techniques and skills and the tools necessary to practice the engineering profession, while thinking about using available technologies to produce electronic circuits that are not available or alternative.

C- Emotional and moral goals

C1- Enhancing thinking and planting the responsibility of the engineering profession

C2 - Using the basics of engineering and computers to support the country's economy and infrastructure development.

Methods of Teaching and Learning

¹ Theoretical presentation of the curriculum vocabulary, its importance and use, with realistic examples.

¹ Theoretical application in the laboratory with a full explanation of the set of tools used and the measurements.

² Classroom group discussions for practical and practical examples.

Methods of Evaluation

Daily exams of all kinds
The duties assigned to the student
Discussion among students and identifying good students
Reports and Studies

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

D - Transferred general and qualifying skills (other skills related to employability and personal development).

D1- Communication skills and the correct delivery of information using the basis of electricity with mathematical proof

D2- Analysis and investigation of every physical component to achieve the correct analysis of the electronic circuit

D 3- Using modern technology and tools necessary to practice the engineering profession

11. Course Structure

Week	No of	Required	Title of Subject	Teaching	Evaluation
	Hours	Learning Output		Method	
1	2 hours + 1 workout per week	understanding the material	Symbols And Abbreviations, Units, Electric Circuit & It's Element.	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
2	2 hours + 1 workout per week	understanding the material	The Direct Current Network. Kirchhoff's Laws & Their Use In Network Analysis.	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
3	2 hours + 1 workout per week	understanding the material	Series Circuits, Parallel Circuits, Series-Parallel Circuits, Open and Short Circuits, Source Transformation	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
4	2 hours + 1 workout per week	understanding the material	Conversion Of Delta To Star Connection And Vice Versa.	Theoretical lectures (general	Assessment varies according to assessment

				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
5	2 hours +	understanding	Nodal Voltage	Theoretical	Assessment
•	1 workout	the material	Method	lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
6	2 hours +	understanding	Loop (mesh)Current	Theoretical	Assessment
-	1 workout	the material	Method.	lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
7	2 hours +	understanding	Superposition	Theoretical	Assessment
-	1 workout	the material	Method	lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
8	2 hours +	understanding	Thevenin's Theorem	Theoretical	Assessment
	1 workout	the material		lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
9	2 hours +	understanding	Norton's Theorem	Theoretical	Assessment
	1 workout	the material		lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment
10	2 hours +	understanding	Maximum Power	Theoretical	Assessment
	1 workout	the material	Transfer Theorem	lectures	varies according
	per week			(general	to assessment
				engineering	methods;
				principles	achievement
				and rules) +	test + class
				practical	assignment

11	2 hours + 1 workout per week 2 hours + 1 workout per week	understanding the material understanding the material	Reciprocity Theorem The Alternating Current Network Types of Alternating Waveforms, Generation of Alternating Current, and Definitions	Theoretical lectures (general engineering principles and rules) + practical Ineoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment Assessment varies according to assessment methods; achievement test + class assignment
			related to Alternating Waveforms.		
13	2 hours + 1 workout per week	understanding the material	The Mean Values of Current and Voltage	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
14	2 hours + 1 workout per week	understanding the material	The Effective Vales of Current and Voltage	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
15	2 hours + 1 workout per week	understanding the material	Circuit Elements in the Phasor Domain	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment
16	2 hours + 1 workout per week		The Vector Diagram	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment

17	2 hours +	Reviews for	Theoretical	Assessment
	1 workout	Complex Numbers	lectures	varies according
	per week	and there	(general	to assessment
		mathematical	engineering	methods;
		onerations th	principles	achievement
			and rules) +	test + class
			practical	assignment
18	2 hours +	Series and Parallel	Theoretical	Assessment
	1 workout	Ac Circuits	lectures	varies according
	per week		(general	to assessment
			engineering	methods;
			principles	achievement
			and rules) +	test + class
			practical	assignment
19	2 hours +	The Instantaneous	Theoretical	Assessment
	1 workout	Power and Mean	lectures	varies according
	per week	Power of AC,	(general	to assessment
		Reactive and	engineering	methods;
		Apparent	principles	achievement
		Power	and rules) +	test + class
		1 OWCI	practical	assignment
20	2 hours +	Using Kirchhoff's	Theoretical	Assessment
	1 workout	law's to solve AC	lectures	varies according
	per week	circuits	(general	to assessment
			engineering	methods;
			principles	achievement
			and rules) +	test + class
			practical	assignment
21	2 hours +	Using Loop's	Theoretical	Assessment
	1 workout	method to solve AC	lectures	varies according
	per week	circuits	(general	to assessment
			engineering	methods;
			principles	achievement
			and rules) +	test + class
			practical	assignment
22	2 hours +	Using	Theoretical	Assessment
	1 Workout	Superposition's	lectures	varies according
	per week	method to solve AC	(general	to assessment
		circuits	engineering	methods;
			principles	achievement
			and rules) +	test + class
	2 haves 1		practical	Assignment
23	2 nours +	Using Inevenin's		Assessment
		theorem to solve AC	lectures	varies according
	per week	circuits	(general	to assessment
			engineering	methous;
			principles	achievement

			and rules) +	test + class
			practical	assignment
24	2 hours +	Using Norton's	Theoretical	Assessment
	1 workout	theorem to solve AC	lectures	varies according
	per week	circuits	(general	to assessment
			engineering	methods;
			principles	achievement
			and rules) +	test + class
			practical	assignment
25	2 hours +	3- Phase Current, 3-	Theoretical	Assessment
	1 workout	Phase System, Y-	lectures	varies according
	per week	Connection Delta	(general	to assessment
		Connection.	engineering	methods;
			principles	achievement
			and rules) +	test + class
			practical	assignment
26	2 hours +	Solving 3-phase	Theoretical	Assessment
	1 workout	networks with	lectures	varies according
	per week	balanced loads,	(general	to assessment
		Solving 3-phase	engineering	methods;
		networks with	principles	achievement
		unbalanced loads	and rules) +	test + class
			practical	assignment
27	2 hours +	Electromagnetism,	Theoretical	Assessment
	1 workout	Permanent and	lectures	varies according
	per week	artificial Magnets,	(general	to assessment
		The Magnetic Field,	engineering	methods;
		The flux density ,	principles	achievement
		The magnetic	and rules) +	test + class
		reluctance , The	practical	assignment
		permeability . The		
		mmf. The magnetic		
		force The		
		electromagnetic		
		circuits		
20	2 hours +	The implementation	Theoretical	Accossmont
28	1 workout	of D LL outpress for	lactures	varies according
	ner week	of B-H curves for	(general	to assessment
	per week	solving	engineering	methods.
		electromagnetic	nrincinles	achievement
		circuits	and rules) +	test + class
			nractical	assignment
20	2 hours +	Transformers The	Theoretical	Assessment
29	1 workout	hystorosis lossos	lectures	varies according
	per week	The oddy current	(general	to assessment
		The eddy current	engineering	methods
		losses	Chancering	methous,

			principles and rules) + practical	achievement test + class assignment
30	2 hours + 1 workout per week	Direct Current Machines, Direct Current Generators, Asynchronous And Synchronous Machines.	Theoretical lectures (general engineering principles and rules) + practical	Assessment varies according to assessment methods; achievement test + class assignment

12. Infrastructure

a. Textbooks	*Boylestad, R. L. " Introductory Circuit Analysis", 4th Edition, Charles E. Merill Publishers.
b. References	 *Alexander C. K. and Sadiku M. N. "Fundamentals of Electric Circuits", McGraw- Hill Companies. *Alexander C. K. and Sadiku M. N. " Circuit 2nd Edition, Analysis, Theory and Practice", Robbins & Miller. *B.L Theraja, " A Text Book of Electrical Technology" ,4th Edition.
c. Recommended books and periodicals (journals, reports, etc.)	
d. Electronic references, internet websites, etc	

13. The Plan of Improving the Course

Adding vocabulary to the curricula within the development of the course at a rate not exceeding 5%

Adding new and modern resources and adding videos to facilitate the learning process

The inclusion of periodic seminars by external professors