Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: Electronic devices and circuits.

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al-Arab University College	
2. Department / Center	Computer technology engineering	
3. Course Title /Code	Electronic devices and circuits	
4. Lecturer Name	Ghufran Mohammed Jassim	
5. Type of Teaching	Attendance	
6. Academic Year /Term	2022-2023	
7. Total No. of Teaching Hours	60 hours	
8. Date f Preparing this Course	29/9/2022	
Description		

9. Course Objectives

a. Providing students with the most important principles and basics of electronic device and circuit

b.Teaching students how to apply electronic device and circuit

c. Providing graduates with the necessary knowledge on electronic device and circuits in organizations.

d. Improving the administrative skills in the field of electronic device and circuits

e. Providing graduates with the skills of education and creative learning.

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

a. Enabling students to acquire knowledge and the art of electronic device and circuits

b. Acquainting students with how to promote their personal knowledge.

c. Helping students to acquire knowledge in the art of electronic device and circuits

d. Enabling students to sharpen their skills in the dynamic work environment.

e. Enabling students to invest their scientific abilities in their working place in the scope of electronic device and circuits

f. Helping students to get the necessary knowledge to solve problems electronic device and circuits

(B) Skill Objectives Related to the Program:

a. Scientific Skills

b. Leadership Skills

c. Skills Related to Administrative Work Challenges

Methods of Teaching and Learning

a. Using already- prepared lectures.

b. Using up-to-date data shows.

c. Homework

d. Adopting group discussions.

Methods of Evaluation

a. Oral tests

- b. Monthly tests
- c. Daily quizzes
- d. Students' Regular Attendance

(C) Sentimental and Value Objectives

a. Realizing ethical objectives.

b. Commitment to university traditions.

c. Compliance with the University Instructions and the Ministry Regulations.

d. Promoting students' personal abilities in educational scopes and how to behave well with others.

Methods of Teaching and Learning

- a. Lectures on university instructions.
- b. Educational guidance lectures.
- c. Continuous directing.
- d. Visiting State and private institutions.
- e. Showing practical cases.

Methods of Evaluation

- a. Daily quizzes.
- b. Classroom discussions and commitment to ethics and sublime values.
- c. Special marks for class activities.
- d. Monthly and quarterly evaluation.

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

a. Enabling students to acquire the skill and art of electronic device and circuits

b. Enabling students to apply creative thinking in electronic device and circuits

c. Enabling students to use modern methods of analysis and conclusions.

d. Enabling students to electronic device and circuits

11. Course Structure

Week	No of Hours	Required Learning Output	Title of Subject	Teaching Method	Evaluation
1	2	understanding	Physic of	- lectures	- oral tests
		the material	semiconductor	- case study	-questions
				-discussions	
2	2	understanding	Physic of	- lectures	- oral tests
		the material	semiconductor diode	- case study	-questions
				-discussions	
3	2	understanding	Physic of Transistor	- lectures	- oral tests
		the material		- case study	-questions
				-discussions	
4	2	understanding	Diode equivalent circuits DC analysis	- lectures	- lectures
		the material		- case study	 case study
				-discussions	-discussions
5-6	4	understanding	Ac to DC Half and Full	- lectures	- lectures
		the material	Wave Rectifier	- case study	 case study
				-discussions	-discussions
7	2	understanding	Clipper circuit	- lectures	- lectures
		the material		- case study	 case study
				-discussions	-discussions
8	2	understanding	Clamper circuit	- lectures	- lectures
		the material		- case study	 case study
				-discussions	-discussions
9	2	understanding	BJT transistor DC equivalent circuits	- lectures	- lectures
		the material		- case study	 case study
				-discussions	-discussions
10	2	understanding	Common Base (C.B)	- lectures	- lectures
		the material	and Common Collector (C.C)	- case study	- case study
			(0.0)	-discussions	-discussions

11	2	understanding the material	Common Emitter (C.E) and DC analysis	 lectures case study discussions 	 lectures case study discussions
12	2	understanding the material	Load line and Q-point	 lectures case study discussions 	 lectures case study discussions
13	2	understanding the material	BJT transistor AC equivalent circuits h- parameters	 lectures case study discussions 	 lectures case study discussions
14	2	understanding the material	BJT transistor AC equivalent circuits re- parameters	 lectures case study discussions 	 lectures case study discussions
15	2	understanding the material	Transistor Amplifier	 lectures case study discussions 	 lectures case study discussions
16	2	understanding the material	Transistor Amplifier	 lectures case study discussions 	 lectures case study discussions
17	2	understanding the material	FET transistor DC equivalent circuits	 lectures case study discussions 	 lectures case study discussions
18	2	understanding the material	Common Gate (C.G) and Common Source (C.S)	 lectures case study discussions 	 lectures case study discussions
19	2	understanding the material	Common Drain (C.D) and DC analysis	 lectures case study discussions 	 lectures case study discussions
20	2	understanding the material	Load line and Q-point	 lectures case study discussions 	 lectures case study discussions
21-22	4	understanding the material	Power Amplifiers	 lectures case study discussions 	 lectures case study discussions
23	2	understanding the material	Operational Amplifier circuits	 lectures case study discussions 	 lectures case study discussions

24	2	understanding the material	Inverter and non- inverter	 lectures case study discussions 	 lectures case study discussions
25	2	understanding the material	Summing and subsector	 lectures case study discussions 	 lectures case study discussions
26	2	understanding the material	Integration and diff.	 lectures case study discussions 	 lectures case study discussions
27-28	4	understanding the material	Oscillators	 lectures case study discussions 	 lectures case study discussions
29-30	4	understanding the material	Integrated Circuits	 lectures case study discussions 	 lectures case study discussions

12. Infrastructure

a. Textbooks	Boylestad Robert L and Louis Nashelsky. 1978. Electronic Devices and Circuit Theory. 2d ed. Englewood Cliffs N.J: Prentice-Hall.
b. References	
c. Recommended books and	
periodicals (journals, reports, etc.)	
d. Electronic references, internet	
websites, etc	

13. The Plan of Improving the Course

a. Studying labor market needs.
b. Be informed of the experiences of other countries in the field of advanced
mathematics and numerical method
c. Be informed of research work published in national and international journals
in the field of advanced mathematics and numerical method