Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: Design algorithms and programming techniques

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al-Arab University College
2. Department / Center	Computer Science Department
3. Course Title /Code	Design algorithms and programming
	techniques
4. Lecturer Name	Dr. Ali K. Mattar
5. Type of Teaching	Attendance
6. Academic Year /Term	2022-2023
7. Total No. of Teaching Hours	90 Hours
8. Date f Preparing this Course	18.10.2022
Description	

9. Course Objectives

a. Providing students with the most important principles and basics of Design algorithms and programming techniques.

b.Teaching students how to apply Design algorithms and programming techniques.

c. Providing graduates with the necessary knowledge on Design algorithms and programming techniques job in organizations.

d. Improving the administrative skills in the field of Design algorithms and programming techniques.

e. Providing graduates with the skills of education and creative learning.

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

a. Enabling students to acquire knowledge and the art of Design algorithms and programming techniques.

b. Acquainting students with how to promote their personal knowledge.

c. Helping students to acquire knowledge in the art of Design algorithms and programming techniques.

d. Enabling students to sharpen their skills in the dynamic work environment.

e. Enabling students to invest their scientific abilities in their working place in the scope of Design algorithms and programming techniques.

f. Helping students to get the necessary knowledge to solve problems Design algorithms and programming techniques.

(B) Skill Objectives Related to the Program:

a. Scientific Skills in the field of Design algorithms and programming techniques. b. Leadership Skills in the field of Design algorithms and programming

techniques.

c. Skills Related to Administrative Work Challenges of Design algorithms and programming techniques.

Methods of Teaching and Learning

a. Using already- prepared lectures.

b. Using up-to-date data shows.

c. Homework

d. Adopting group discussions.

Methods of Evaluation

- a. Oral tests
- b. Monthly tests
- c. Daily quizzes
- d. Students' Regular Attendance

(C) Sentimental and Value Objectives

a. Realizing ethical objectives.

b. Commitment to university traditions.

c. Compliance with the University Instructions and the Ministry Regulations.

d. Promoting students' personal abilities in educational scopes and how to behave well with others.

Methods of Teaching and Learning

- a. Lectures on university instructions.
- b. Educational guidance lectures.
- c. Continuous directing.
- d. Visiting State and private institutions.
- e. Showing practical cases.

Methods of Evaluation

a. Daily quizzes.

b. Classroom discussions and commitment to ethics and sublime values.

c. Special marks for class activities.

d. Monthly and quarterly evaluation.

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

a. Enabling students to acquire the skill and art of Design algorithms and programming techniques.

b. Enabling students to apply creative thinking in Design algorithms and programming techniques.

c. Enabling students to use modern methods of analysis and conclusions.

d. Enabling students to Design algorithms and programming techniques.

11. Course Structure

Week	No of Hours	Required Learning Output	Title of Subject	Teaching Method	Evaluation
1	2	understanding	*How programmer	- lectures	- oral tests
		the material	thinking using	- case study	-questions
			algorithms	-discussions	
2	2	understanding	*Data mining	- lectures	- oral tests
		the material	Algorithms and Big	- case study	-questions
			Data	-discussions	
3	2	understanding	* Introduction to	- lectures	- oral tests
		the material	internet of things IOT	- case study	-questions
				-discussions	
4	2	understanding		- lectures	- lectures
		the material	*Applications of IOT	- case study	- case study
				-discussions	-discussions
5	2	understanding	* logation boood	- lectures	- lectures
		the material	services LBS	- case study	- case study
				-discussions	-discussions
6	2	understanding		- lectures	- lectures
		the material	*Applications of LBS	- case study	- case study
				-discussions	-discussions
7	2	understanding	* Introduction to	- lectures	- lectures
		the material	Arduino programming	- case study	- case study
			world	-discussions	-discussions
8	2	understanding		- lectures	- lectures
		the material	* Arduino applications	- case study	- case study
				-discussions	-discussions

9	2	understanding	*Classical computing	- lectures	- lectures
		the material	and Quantum in	- case study	- case study
			physics	-discussions	-discussions
10	2	understanding		- lectures	- lectures
		the material	auantum computing	- case study	- case study
			quantani companing	-discussions	-discussions
11	2	understanding	*Annlingting of	- lectures	- lectures
		the material	Quantum Computing	- case study	- case study
				-discussions	-discussions
12	2	understanding	* phone application	- lectures	- lectures
		the material	programming	- case study	- case study
			language with flutter	-discussions	-discussions
13	2	understanding	* flutten en el elent	- lectures	- lectures
		the material	applications	- case study	- case study
				-discussions	-discussions
14	2	understanding	*phone application	- lectures	- lectures
		the material	programming	- case study	- case study
			language with Kolten	-discussions	-discussions
15	2	understanding		- lectures	- lectures
		the material	networking	- case study	- case study
				-discussions	-discussions
16	2	understanding	*how to dool with	- lectures	- lectures
		the material	networking in real life	- case study	- case study
			······································	-discussions	-discussions
17	2	understanding	* Introduction to	- lectures	- lectures
		the material	python (what can it	- case study	- case study
			offer today?)	-discussions	-discussions
18	2	understanding	*learning python	- lectures	- lectures
	the material	programming	- case study	- case study	
			language /1	-discussions	-discussions
19	2	understanding	*learning python	- lectures	- lectures
	the material	the material	programming	- case study	- case study
		language /2	-discussions	-discussions	
20	2	understanding	* Introduction to	- lectures	- lectures
	the material * Introduction to	machine learning	- case study	- case study	
			in second counting	-discussions	-discussions

-	1		1	1	
21	2	understanding	* doop loorning oo	- lectures	- lectures
		the material	machine learning as	- case study	- case study
			3	-discussions	-discussions
22 2	understanding	* 1 6 1 7 6	- lectures	- lectures	
		the material	reality)	- case study	- case study
			, , , , , , , , , , , , , , , , , , ,	-discussions	-discussions
23	2	understanding		- lectures	- lectures
		the material	and meta verse	- case study	- case study
				-discussions	-discussions
24	2	understanding	* \ \ /	- lectures	- lectures
		the material	[^] What is the computing?	- case study	- case study
			ooginitivo oomputing.	-discussions	-discussions
25	2	understanding	**	- lectures	- lectures
		the material	*Applications of	- case study	- case study
			-discussions	-discussions	
26	2	understanding	* 1 4 1 4 4	- lectures	- lectures
		the material	" Introduction to	- case study	- case study
			oryprocyclonic	-discussions	-discussions
27	2	understanding	* A 1' (' C	- lectures	- lectures
		the material	* Applications of cryptosystems	- case study	- case study
			oryprocyclonic	-discussions	-discussions
28	2	understanding		- lectures	- lectures
		the material	* What is biometric	- case study	- case study
				-discussions	-discussions
29	2	understanding		- lectures	- lectures
		the material	^DIOMETRIC	- case study	- case study
				-discussions	-discussions
30	2	understanding	* biometric and	- lectures	- lectures
		the material	classical	- case study	- case study
			cryptosystem	-discussions	-discussions

12.Infrastructure

a. Textbooks	None
b. References	1- Chris Bernhardt, "Quantum computing for everyone", MIT , 2019.

	2- Francois Chollet ,"Deep Learning with Python", Manning Publications Co. , 2018 .
c. Recommended books and periodicals (journals, reports, etc.)	1-Toshinori Muankata, "Fundamentals of the New Artificial Intelligence", Springer , 2008
d. Electronic references, internet websites, etc	https://online.wlu.ca/news/2019/02/12/how- algorithm-design-applied
	https://www.udemy.com/course/algorithms- and-programming-techniques/

13. The Plan of Improving the Course

a. Studying labor market needs.
b. Be informed of the experiences of other countries in the field of Design
algorithms and programming techniques.
c. Be informed of research work published in national and international journals
in the field of Design algorithms and programming techniques.