Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: Computer Architecture

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al-Arab University College
2. Department / Center	Computer Science Department
3. Course Title /Code	Computer Architecture
4. Lecturer Name	Dr. Oday Jasim Mohammed Al-Furaiji
5. Type of Teaching	Attendance
6. Academic Year /Term	2022-2023
7. Total No. of Teaching Hours	60 hours
8. Date f Preparing this Course	15.09.2022
Description	

9. Course Objectives

a. Providing students with the most important principles and basics of Computer Architecture

b. Teaching students how to apply computer architecture

c. Providing graduates with the necessary knowledge on computer architecture job in organizations.

d. Improving the administrative skills in the field of computer architecture in general.

e. Providing graduates with the skills of education and creative learning.

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

a. Enabling students to acquire knowledge and the art of computer architecture

b. Acquainting students with how to promote their personal knowledge.

c. Helping students to acquire knowledge in the field of computer architecture.

d. Enabling students to sharpen their skills in the dynamic work environment.

e. Enabling students to invest their scientific abilities in their working place in the scope of computer architecture.

f. Helping students to get the necessary knowledge to solve problems related to computer architecture.

(B) Skill Objectives Related to the Program:

a. Acquisition of skills in knowledge and management of computer architecture problems

b. Acquisition of skills in understanding and knowledge of different computer architectures and methods of evaluating them

c. Acquiring skills of using and implementing the basic computer architectures

Methods of Teaching and Learning

a. Using already- prepared lectures.

b. Using up-to-date data shows using video contents, PowerPoint and pdf documents.

c. Homework

d. Adopting group discussions.

Methods of Evaluation

a. Oral tests	
b. Monthly tests	
c. Daily quizzes	
d. Students' Regular Attendance	

(C) Sentimental and Value Objectives

a. Realizing ethical objectives.

b. Commitment to university traditions.

c. Compliance with the University Instructions and the Ministry Regulations.

d. Promoting students' personal abilities in educational scopes and how to behave well with others.

Methods of Teaching and Learning

a. Lectures on university instructions.

b. Educational guidance lectures.

c. Continuous directing.

d. Visiting State and private institutions.

e. Showing practical cases.

Methods of Evaluation

a. Daily quizzes.

b. Classroom discussions and commitment to ethics and sublime values.

c. Special marks for class activities.

d. Monthly and quarterly evaluation.

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

a. Enabling students to acquire skills to dealing with computer architecture.

b. Enabling students to apply creative thinking in computer architecture manufacturing.

c. Enabling students to use modern methods of analysis and conclusions.

d. Enabling students to develop and design new computer architectures-.

11. Course Structure

Week	No of Hours	Required Learning Output	Title of Subject	Teaching Method	Evaluation
1	2	understanding the material	CPU organization	 lectures case study discussions 	- oral tests -questions
2	2	understanding the material	Types of Registers	 lectures case study discussions 	 oral tests questions
3	2	understanding the material	Instruction Set Design	 lectures case study discussions 	 oral tests questions
4	2	understanding the material	Addressing Modes	 lectures case study discussions 	 oral tests questions
5	2	understanding the material	Instruction Types	 lectures case study discussions 	 oral tests questions
6	2	understanding the material	Microprogramming	 lectures case study discussions 	 oral tests questions
7	2	understanding the material	Design of CPU Control Unit	 lectures case study discussions 	 oral tests questions
8	2	understanding	Control of CPU (Functional	- lectures	- oral tests

		the material	Requirements)	- case study	-questions
	-			-discussions	
9	2	understanding		- lectures	- oral tests
		the material	CU Design Methods	- case study	-questions
				-discussions	
10	2	understanding	Hardwired	- lectures	- oral tests
		the material	Implementation	- case study	-questions
				-discussions	
11	2	understanding	Microprogrammed	- lectures	- oral tests
		the material	Implementation	- case study	-questions
				-discussions	
12	2	understanding	Advantages and	- lectures	- oral tests
		the material	Disadvantages of both	- case study	-questions
			implementations	-discussions	
13	2	understanding		- lectures	- oral tests
		the material	Memory Management	- case study	-questions
				-discussions	
14	2	understanding	Characteristics of	- lectures	- oral tests
		the material	Memory System	- case study	-questions
				-discussions	
15	2	understanding		- lectures	- oral tests
		the material	The Memory Hierarchy	- case study	-questions
				-discussions	
16	2	understanding		- lectures	- oral tests
		the material	Memory Interleaving	- case study	-questions
				-discussions	
17	2	understanding		- lectures	- oral tests
		the material	Cache Memory	- case study	-questions
				-discussions	
18	2	understanding		- lectures	- oral tests
		the material	Mapping Process	- case study	-questions
				-discussions	
19	2	understanding		- lectures	- oral tests
		the material	Microcomputer Memory	- case study	-questions
				-discussions	
20	2	understanding	Memory Connection to	- lectures	- oral tests
		the material	Microprocessor	- case study	-questions

				diaguasiana	
				-discussions	
21 2	2	understanding	Pipeline and Vector	- lectures	- oral tests
	the material	processing	- case study	-questions	
		-discussions			
22	2	understanding	Single Cycle versus	- lectures	- oral tests
		the material	Single-Cycle versus Pipelined Performance	- case study	-questions
				-discussions	
23	2	understanding		- lectures	- oral tests
		the material	Practice Examples	- case study	-questions
				-discussions	
24	2	understanding		- lectures	- oral tests
		the material	Instruction Pipeline Design	- case study	-questions
			Design	-discussions	
25	2	understanding	Instruction Execution Phases	- lectures	- oral tests
		the material		- case study	-questions
				-discussions	
26	2	understanding		- lectures	- oral tests
		the material	Practice Examples	- case study	-questions
				-discussions	
27	2	understanding		- lectures	- oral tests
		the material	Multiprocessors	- case study	-questions
				-discussions	
28	2	understanding	Cache Coherence and	- lectures	- oral tests
		the material	Synchronization	- case study	-questions
			Mechanisms	-discussions	
29 2	2	2 understanding		- lectures	- oral tests
		the material	Dataflow Architectures	- case study	-questions
				-discussions	
30	2	understanding		- lectures	- oral tests
		the material	Partitioning Strategies	- case study	-questions
				-discussions	

12.Infrastructure

a. Textbooks	1. "Fundamentals of computer organization and architecture",		
	2. M. M. Mano, "computer system architecture" third edition,		

	prentice Hall, 1993.
	3. Walter A. Triebel, "The 80386, 80486, and Pentium [®] Processors Hardware, Software, and Interfacing", 1998.
b. References	
	4. David A. Patterson and John L. Hennessy, "Computer
	Organization and Design",1998.
c. Recommended	
books and periodicals	5. Computer Architecture Introduction
(journals, reports, etc.)	
d. Electronic	http://www.fuesheelyeeptre.net/CompuScience/Erec
references, internet	http://www.freebookcentre.net/CompuScience/Free-
websites, etc	Computer-Architecture-Books-Download.html

13. The Plan of Improving the Course

a. Studying labor market needs.

b. Be informed of the experiences of other countries in the field of computer architecture.

c. Be informed of research work published in national and international journals in the field of computer architecture.