Ministry of Higher Education and Scientific Research

Supervision and Scientific Evaluation Body

Quality Assurance and Academic Accreditation Office

Course Description Sample

Subject: ---- Logic -----

This course description provides a brief survey of the most important characteristics, expected learning output, showing whether students have made full use f the learning opportunities. These characteristics have to be matched with the description of the program.

1. Educational Institution	Shatt Al-Arab University College
2. Department / Center	Computer Science
3. Course Title /Code	Logic
4. Lecturer Name	Ayad Mohammed Jabbar
5. Type of Teaching	Attendance
6. Academic Year /Term	Midterm
7. Total No. of Teaching Hours	150 hours
8. Date f Preparing this Course	1/9/2021
Description	

9. Course Objectives

- a. Providing students with the most important principles and basics of programming logic and explain how it works and use it in computers and electronic circuits
- b. Teaching students how to apply electronic circuit analysis and simplification
- c. Providing graduates with the necessary knowledge on the basic knowledge and understanding of arithmetic operations and numerical systems that will be used in the future job in organizations.

- e. Providing graduates with the skills of education and creative learning.
- f. Using the laws of Boolean algebra.
- g. The design of the main and secondary logic gates and their work statement and how to design and output their circuits.
- h- Use the study circuit and flip-flop and understand the theories that can be used.

10. Course Output, Methodology and Evaluation

(A) Cognitive Objectives

- a. Enabling students to acquire knowledge and the art of cognitive goals
- b. Acquainting students with how to promote their personal knowledge.
- c. Helping students to acquire knowledge in the art of Understand the basic principles of logic gates.
- d. Discovering and analyzing circuits with their simplification.
- e. Knowledge of computing operations between several systems and how to convert between them.
- f. Helping students to get the necessary knowledge about the basic principles of harmonic and series circuits

(B) Skill Objectives Related to the Program:

- a. Learn the several systems and know how to convert between them
- b. Learn and analyze logic circuits with simplification of circuits with a truth table
- c. Learn the laws of algebra and memory circuits

Methods of Teaching and Learning

- a. Explanation and clarification through periodic study lectures
- b. Using up-to-date data shows about the application and theories in computers and electronic circuits.
- c. Use the theories and the basics of operations in several systems in the laboratory using electronic circuits

d. Adopting group discussions with extra examples.

Methods of Evaluation

- a. Oral tests
- b. Monthly tests
- c. Daily quizzes
- d. Students' Regular Attendance

(C) Sentimental and Value Objectives

- a. Realizing ethical objectives and emotional goals
- b. Commitment to university traditions and enhancing thinking and planting the responsibility of the profession and what are the requirements and duties required of students to be a supportive individual for the country.
- c. Compliance with the University Instructions and the Ministry Regulations.
- d. Promoting students' personal abilities in educational scopes and how to behave well with others.
- e. Urging students to participate in international teams to improve skills

Methods of Teaching and Learning

- a. Theoretical presentation of the curriculum vocabulary, its importance and use, with realistic examples
- b. Educational guidance lectures and theoretical application in the laboratory with a detailed explanation of the program step by step.
- c. Continuous directing.
- d. Visiting State and private institutions.
- e. Group discussions.

Methods of Evaluation

- a. Tests of all kinds, daily and periodic and quarterly theoretical exams.
- b. Classroom discussions and commitment to ethics and sublime values.
- c. Special marks for class activities.
- d. Monthly and quarterly evaluation.

D) General and Qualitative Skills (other skills related to the ability of employment and personal development)

- a. Transferred general and qualifying skills (other skills related to employability and personal development).
- b. Enabling students to apply creative thinking and skills of how to communicate with others.
- c. Enabling students to use modern methods of analysis and conclusions to use the analysis and proof.
- d. Enabling students to using modern technology in writing a report

11. Course Structure

Week	No of	Required Learning	Title of Subject	Teaching	Evaluation
	Hours	Output		Method	
1	2	understanding	Number systems	- lectures	- oral tests
		the material	(decimal, binary, octal,	- case study	-questions
			hexadecimal)	-discussions	
2	2	understanding	Number systems (BCD,	- lectures	- oral tests
		the material	excess-3, gray code)	- case study	-questions
			excess s, gray seach	-discussions	
3	2	understanding	Number systems	- lectures	- oral tests
		the material	(conversions,	- case study	-questions
			operations, complement's)	-discussions	
4	2	understanding	Logic gates (AND, OD	- lectures	- lectures
	The material 1 s s s s s s s s s	Logic gates (AND, OR, NOT)	- case study	- case study	
				-discussions	-discussions

5	2	understanding the material	Logic gates (NAND, NOR, XOR, XNOR)	lecturescase studydiscussions	- lectures - case study -discussions
6	2	understanding the material	Logic gates (logic Simplification (Boolean, Demorgan's theorem))	- lectures - case study -discussions	- lectures - case study -discussions
7	2	understanding the material	Karnaugh maps (2- variables, 3-variables)	lecturescase studydiscussions	lecturescase studydiscussions
8	2	understanding the material	Karnaugh maps (4- variables, 5-variables)	- lectures - case study -discussions	- lectures - case study -discussions
9	2	understanding the material	Karnaugh maps (SOP, POS, don't care)	lecturescase studydiscussions	- lectures - case study -discussions
10	2	understanding the material	Arithmetic operations (adder, parallel binary adder)	lecturescase studydiscussions	lecturescase studydiscussions
11	2	understanding the material	Arithmetic operations (subtractor)	lecturescase studydiscussions	lecturescase studydiscussions
12	2	understanding the material	Arithmetic operations (decoder, encoder)	lecturescase studydiscussions	- lectures - case study -discussions
13	2	understanding the material	Arithmetic operations (multiplexer, demultiplexer)	- lectures - case study -discussions	- lectures - case study -discussions
14	2	understanding the material	Arithmetic operations (comparator)	lecturescase studydiscussions	- lectures - case study -discussions
15	2	understanding the material	Arithmetic operations (code conversion)	lecturescase studydiscussions	- lectures - case study -discussions
16	2	understanding the material	Flip-flops (SR latch, D latch)	lecturescase studydiscussions	- lectures - case study -discussions
17	2	understanding	Flip-flops (T-latch, J-K	- lectures	- lectures

		the material	F.F)	- case study	- case study
	_			-discussions	-discussions
18 2	understanding	Flip-flops (edge	- lectures	- lectures	
		the material	triggered)	- case study	- case study
			,	-discussions	-discussions
19	2	understanding	Flip-flops (conversion	- lectures	- lectures
		the material	from one type to	- case study	- case study
			another)	-discussions	-discussions
20	2	understanding	Counters	- lectures	- lectures
		the material	(asynchronous)	- case study	- case study
			(acy	-discussions	-discussions
21	2	understanding	Counters	- lectures	- lectures
		the material	(synchronous)	- case study	- case study
				-discussions	-discussions
22	2	understanding	Counters (decade,	- lectures	- lectures
		the material	up/down)	- case study	- case study
			ар, аотт,	-discussions	-discussions
23	2	understanding	Counters (cascade,	- lectures	- lectures
		the material	counter decoding)	- case study	- case study
			courter accounts,	-discussions	-discussions
24	2	understanding	Shift-registers (serial	- lectures	- lectures
		the material	in/serial out, serial	- case study	- case study
			in/parallel out, parallel in/ serial out, parallel	-discussions	-discussions
			in/parallel out)		
25	2	understanding	Shift-registers	- lectures	- lectures
		the material	(bidirectional , shift	- case study	- case study
			register counter	-discussions	-discussions
			(Johnson counter, Ring counter))		
26	2	understanding	Multivibrators	- lectures	- lectures
		the material	(definition, astable,	- case study	- case study
			bistable,)	-discussions	-discussions
27	2	understanding	Multivibrators	- lectures	- lectures
		the material	(monostable, 555	- case study	- case study
			timer)	-discussions	-discussions
28	2	understanding		- lectures	- lectures
		the material	A/D and D/A	- case study	- case study
			convertors (R/2R DAC,		•

			R/2nR DAC,flash ADC)	-discussions	-discussions
29	2	understanding the material	A/D and D/A convertors (tacking ADC, slope ADC ,successive approximation ADC)	- lectures - case study -discussions	- lectures - case study -discussions
30	2	understanding the material	A/D and D/A convertors (digital ramp ADC,delta sigma ADC)	lecturescase studydiscussions	lecturescase studydiscussions

12.Infrastructure

a. Textbooks	Introduction to Digital Logic Design First Edition
	Digital Logic Design: Learn the Logic Circuits and Logic Design
	Digital Logic Design 4th Edition
b. References	Digital Fundamentals", Eleventh Edition, Thomas L. Floyd, 2015, Pearson
	Education, ISBN 13: 978-1-292-07598-3.
	"Digital Electronics: Principles, Devices and Applications", Anil K. Maini,
	2007, John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5.
C.	
Recommende	
d books and	
periodicals	
(journals,	
reports, etc.)	
d. Electronic	Digital Circuits - Logic Gates
references,	(https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.
internet	htm)
websites, etc	

13. The Plan of Improving the Course

- a. Studying labor market needs.
- b. Be informed of the experiences of other countries in the field of development by including new vocabulary
- c. Add new logical circuits