Course Description

This course description provides a necessary summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve, demonstrating whether he or she has made the most of the available learning opportunities. They must be linked to the description of the programme.

1. Educational Institution	Shatt Al, Arab University College
2. Scientific Department / Center	Computer Technology Engineering
3. Course name/code	FUND 9101/ Math I
4. Available forms of attendance	(Electronic/Attendance) Three hours a week
5. Semester/Year	Biannual
6. Number of study hours (total)	90 hours
7. Date of preparation of this description	$11 / 7 / 2022$
Preparing a conscious generation that possesses abundant information in mathematics capable of solving complex mathematical laws useful in engineering in general and in electronic circuits	

Finding solutions to complex differential equations by using more than one method of solving

9. Course Outcomes and Teaching Methods, Learning and Assessment

A. Cognitive Objectives

A1 - Knowledge of the basics of mathematics and distinguish the basic principles of states and their goals.
A2. Solution of derivatives and knowledge of their applications
A3- Calculus solution and knowledge of methods for solution
A4. Fundamentals of Matrices
A5. Solving linear equations
A6. Use of linear equations in solving matrices
B. Skills objectives of the course

B1 - Identify mathematical problems and determine how to solve
B2 - Application of mathematical analysis and the use of the basics of mathematics for the solution
B3 - Analysis of the results and their interpretation using evidence and fundamentals of mathematics
B4- Linking the theoretical aspect with discussions and how to use mathematical laws and rules to solve complex mathematical problems
Teaching and learning methods
Lectures
Discussions between different student groups on the application of theories to solve mathematical problems
Create workshops and theoretical presentation on how to use the basics of mathematics to limit simple and complex electrical and electronic circuits Use multiple means to increase understanding and clarification
Discussions and extracurricular assignments to increase understanding of mathematical and applied examples used in applications and electronic circuits

Evaluation Methods

Quarterly exams
Quizzes
Other extra-curricular tests

C. Emotional and Ethical Objectives

A1 - Promote thinking and cultivateethical responsibility to learn and think about a set of protective solutions to solve mathematical problems and how to analyze electronic circuits
C2 - Develop the thinking strategy of the student to analyze electronic circuits in different forms
C3. Self-esteem and self-esteem through meaningful discussions
C4 - Develop the strategy of developing the correct mathematical proofs to prove the validity of solutions and their shortness and how to solve in a simple way so that electronic circuits can be made effective and do not need unavailable resources

Teaching and learning methods

Quarterly and final exams where the total of the first and second semester (40 degrees) while the final exam is (60 degrees)

Evaluation Methods

Tests of various kinds
Duties
Learning matrix by presenting the results and discussing them with the participants in the discussion
Reports \& Studies
d. General and qualifying skills transferred (other skills related to employability and personal development).
D1-Communication skills and put forward mathematical ideas and various solutions in a civilized form away from intolerance
D2 - Analysis, investigation and comparison to reach a conclusion through the evidence of the sport
D3 - Flexibility in dealing and respect for time
D4. Teamwork

10.Course Structure

1.Infrastructure	Thomas, Calculus by Anton, Bivens and Davis
1- Required textbooks	Calculus I.Advanced Engineering Mathematics by Alan Jeffrey.
2- Key References (Sources)	
A) Recommended books and references (scientific journals, reports,)	Engineering Mathematics tutorials
B) Electronic References, Web Sites,	

2. Course Development Plan

Add vocabulary to the curricula within the development of the course and by more than 5\%
Add new and up-to-date sources
Include blended learning and increase the number of hours of the curriculum Add a number of extra-curricular hours

