MODULE DESCRIPTION FORM

duuw) I Bola)l Csog 3gal

Module Information

a1 B3] ologlae
Module Title Software Engineering Module Delivery
Module Type Core Theory
T Lecture
Module Code Lab
ECTS Credits 6 U Tutorial
Practical
SWL (hr/sem) 150 [0 Seminar
Module Level 2 Semester of Delivery 1
Administering Department () College Computer Science
Module Leader oo ool Jowl p.0 e-mail

Ass.Lec Aseel Jasim

Module Leader’s Acad. Title

Assistant Lecturer

Module Leader’s Qualification

Master Dgree

Module Tutor e-mail E-mail
Peer Reviewer Name Name e-mail E-mail
Scientific Committee Approval

PP 01/06/2023 Version Number | 1.0

Date

Relation with other Modules

S5 Lualyll dlgall o 23

Prerequisite module

Semester

Co-requisites module None

Semester




Module Aims, Learning Outcomes and Indicative Contents

dpoliyYl Slgimally whasll 751659 dnal ] B3Loll L]

Module Objectives

dwlydl Bl Caluta

Introducing students to the basic concepts of software engineering and their
importance in building efficient and maintainable systems.

Enabling students to analyze system requirements and transform them into a
well-thought-out software design using appropriate modeling tools.
Teaching students advanced software design principles (such as SOLID and
design patterns) to create high-quality software.

Training students to use testing and version control tools to ensure software
reliability and ease of development.

Providing students with software project management skills using modern
methodologies such as Agile and Scrum.

Developing students' ability to work within a development team and
understanding the ethical and professional aspects of the field.

Enhancing students' communication skills to document software and deliver
technical presentations effectively.

Module Learning
Outcomes

Balal) @hadl ol 50
el

Understand the Software Life Cycle (SDLC) and its development models
(e.g., Waterfall, Agile).

Analyze system requirements and design solutions using modeling tools
(e.g., UML).

Apply software design principles (e.g., SOLID, design patterns) to write
maintainable code.

Use testing and version control tools (e.g., JUnit, Git) to ensure software
quality.

Manage software projects using methodologies such as Scrum and
evaluate technical trade-offs.

Work effectively within development teams while adhering to
professional ethics (e.g., security, intellectual property).

Document software and clearly deliver technical presentations to
stakeholders and participating teams.

Indicative Contents

LalipYl Clgixall

e Introduction to Software Engineering
e Engineering Systems

e Engineering Systems

e Processing

e Management

e Modeling Languages




Learning and Teaching Strategies

ey ol Clnl

Strategies

vk W

Lectures and interactive discussions

Practical laboratory sessions
Problem-solving exercises and tutorials
Simulation tools and software

Assessments (exams, projects) with feedback







