وزارة التعليم العالي والبحث الطمي جهاز الإشسراف والنقويم العلمي دائرة ضمان الجودة والاعتماد الأكاديمي

# استمارة وصف البرنامج الأكاديمي للعام الدراسي 2024-2025 للكليات والمعاهد

جامعة : جامعة شط العرب الاهلية

الكلية /المعهد: الكلية التقنية الهندسية

القسم العلمي القسم الطمي : قسم هندسة تقنيات الوقود والطاقة تاريخ ملء الملف : 2025/8/10

النونيع: المسلم : المسلم : المسلم المعاون العلمي: ١٥ - د . طحم السم رئيس القسم: المحمد 1010/10 الناريخ: 202/8/

دقق الملف من قبل شعبة ضمان الجودة والأداء الجامعي

اسم مدير شعبة ضمان الجودة والأداء الجامعي:

التاريخ ١ ١

مصادقة المسيد العميد

10/8/2025

## وصف البرنامج الأكاديمي: ديناميك الحرارة 1

يوفر النموذج إيجازاً لأهم خصائص المقرر ومخرجات التعلم المتوقعة من الطالب.

| 1. المؤسسة التعليمية                                     | جامعة شط العرب                  |
|----------------------------------------------------------|---------------------------------|
| 2. القسم العلمي / المركز                                 | الكلية التقنية الهندسية         |
| <ol> <li>اسم البرنامج الأكاديمي او<br/>المهني</li> </ol> | قسم هندسة تقنيات الوقود والطاقة |
| 4. اسم الشهادة النهائية                                  | بكالوريوس هندسة                 |
| 5. النظام الدر اسي :<br>سنوي /مقرر ات/اخرى               | نظام بولونيا                    |
| 6. برنامج الاعتماد المعتمد                               |                                 |
| 7. المؤثرات الخارجية<br>الأخرى                           | لايوجد                          |
| 8. تاريخ إعداد الوصف                                     | 2025-8-20                       |
| 9. أهداف البرنامج الأكاديمي                              |                                 |

- توضيح المفاهيم الأساسية للقوانين الأولى والثانية للديناميكا الحرارية وتطبيقاتها.
  - تطوير المهارات العملية في حل مشاكل توازن الطاقة.
  - إظهار فهم أساسي لمبادئ الديناميكا الحرارية، وخصائص المواد النقية.
- وصف العمليات العكسية وغير العكسية، بما في ذلك كل من العمليات المثالية والحقيقية من منظور ماكروسكوبي.

### 10. مخرجات البرنامج المطلوبة وطرائق التعليم والتعلم والتقييم

## أ- المعرفة والفهم (الأهداف المعرفية ):

- تحقيق فهم أساسى للمفاهيم الرئيسية لديناميك الحراره وخصائص المواد النقية.
  - تعزيز مهارات الطلاب في حل المشكلات في توازن الطاقة.
- تحليل ووصف العمليات العكسية وغير العكسية، بما في ذلك خصائصها الماكر وسكوبية و التطبيقات العملية.

## ب - الأهداف المهار اتية الخاصة بالمقرر.

- سيقوم الطلاب بتحليل البيانات التجريبية لتقييم أداء أنظمة الطاقة المختلفة، مع تحديد مجالات للتحسين و التطوير.
- سيتناول الطلاب التحديات الهندسية المعقدة المتعلقة بديناميك الحراره مع ايجاد حلولًا فعالة لها.
- سيقوم الطلاب بعرض النتائج الفنية والمقترحات المتعلقة بديناميك الحراره بشكل فعال.

#### طرائق التعليم والتعلم

## الشرح والتوضيح (المحاضرة).

- طريقة التعلم الذاتي (تكليف الطلبة بإكمال تعلم بعض المهارات بعد إعطائهم أساسياتها).
  - عقد مناقشات جماعية.

#### طرائق التقييم

- الاختبارات النظرية المنتظمة والفجائية.
  - الواجبات والاختبارات العملية.
    - التقارير.

## ج- الأهداف الوجدانية والقيمية

- تعزيز الاحترام و المسؤولية.
- تعزيز المواقف الإيجابية تجاه التعلم والتعاون والسلوك الأخلاقي

- د المهارات العامة والتأهيلية المنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي).
  - تطوير قدرات الطلاب القيادية.
  - تحسين كفاءة الطلاب في تقديم المعلومات التقنية، وكتابة التقارير، وتوضيح النتائج.
- تطوير مهارات الطلاب التقنيه من خلال مشاركتهم في اجراء تجارب عمليه تتعلق بديناميك الحراره.
  - تشجيع الطلاب على التكيف مع التقنيات والمنهجيات الجديدة المرتبطه بديناميك الحراره.

## طرائق التعليم والتعلم

- التدريب الميداني
  - المحاضرات
- امشاريع العمل الجماعي

#### 10- بنيه المقرر

| Week | No of | Required           | Title of Subject       | Teaching     | Evaluation    |
|------|-------|--------------------|------------------------|--------------|---------------|
|      | Hours | Learning Output    |                        | Method       |               |
| 1    |       | Grasping key       | Fundamental concepts   | Lectures and | Oral tests    |
|      |       | thermodynamic      | and terminologies in   | discussions  | and questions |
|      |       | concepts, terms,   | thermodynamics         |              |               |
|      |       | and variables      |                        |              |               |
| 2    |       | Categorizing       | Classification of      | Lectures and | Oral tests    |
|      |       | thermodynamic      | systems and energy     | discussions  | and questions |
|      |       | systems and        | types                  |              |               |
|      |       | classifying        |                        |              |               |
|      |       | different types of |                        |              |               |
|      |       | energy             |                        |              |               |
| 3    |       | Understanding      | Point and Path         | Lectures and | Oral tests    |
|      |       | point and path     | Properties, Energy in  | discussions  | and questions |
|      |       | properties and how | Transition             |              |               |
|      |       | energy transitions |                        |              |               |
|      |       | occur in           |                        |              |               |
|      |       | thermodynamic      |                        |              |               |
|      |       | processes          |                        |              |               |
| 4    |       | Grasping the       | Heat, work, reversible | Lectures and | Oral tests    |
|      |       | concepts of heat   | and irreversible       | discussions  | and questions |
|      |       | and work,          | processes, and the     |              |               |
|      |       | differentiate      | phase rule             |              |               |
|      |       | between reversible |                        |              |               |
|      |       | and irreversible   |                        |              |               |

|    | 1 |                     |                         |              |               |
|----|---|---------------------|-------------------------|--------------|---------------|
|    |   | processes, and      |                         |              |               |
|    |   | understand the      |                         |              |               |
|    |   | phase rule and its  |                         |              |               |
|    |   | applications        | 4                       |              |               |
| 5  |   | Understanding       | First law of            | Lectures and | Oral tests    |
|    |   | the first law and   | Thermodynamics          | discussions  | and questions |
|    |   | internal energy     |                         |              |               |
|    |   | statements of first |                         |              |               |
|    |   | law for non-flow    |                         |              |               |
|    |   | and flow systems    |                         |              |               |
| 6  |   | Understanding the   | Enthalpy and heat       | Lectures and | Oral tests    |
|    |   | concepts of         | capacity of the first   | discussions  | and questions |
|    |   | enthalpy and heat   | law                     |              |               |
|    |   | capacity            |                         |              |               |
| 7  |   | Statements of the   | Second law of           | Lectures and | Oral tests    |
|    |   | second law of       | thermodynamics          | discussions  | and questions |
|    |   | thermodynamics      |                         |              |               |
| 8  |   | Understanding       | Entropy Function and    | Lectures and | Oral tests    |
|    |   | how to apply the    | Applications of the     | discussions  | and questions |
|    |   | entropy function    | Second Law of           |              |               |
|    |   | and its             | Thermodynamics          |              |               |
|    |   | implications in     |                         |              |               |
|    |   | various scenarios   |                         |              |               |
|    |   | governed by the     |                         |              |               |
|    |   | second law of       |                         |              |               |
|    |   | thermodynamics.     |                         |              |               |
| 9  |   | Identifying and     | Thermodynamic           | Lectures and | Oral tests    |
|    |   | applying            | formulations:           | discussions  | and questions |
|    |   | measurable          | measurable quantities,  |              |               |
|    |   | quantities,         | basic energy relations, |              |               |
|    |   | understanding       | and maxwell relations   |              |               |
|    |   | basic energy        |                         |              |               |
|    |   | relations, and      |                         |              |               |
|    |   | using Maxwell       |                         |              |               |
|    |   | relations in        |                         |              |               |
|    |   | thermodynamic       |                         |              |               |
|    |   | calculations        |                         |              |               |
| 10 |   | Calculating         | Calculating enthalpy,   | Lectures and | Oral tests    |
|    |   | enthalpy, internal  | internal energy, and    | discussions  | and questions |
|    |   | energy, and         | entropy from            |              |               |
|    |   | entropy as          | thermodynamic           |              |               |
|    |   | functions of        | formulation             |              |               |
|    |   | pressure and        |                         |              |               |
|    |   | temperature using   |                         |              |               |
|    |   | thermodynamic       |                         |              |               |
|    |   | formulations        |                         |              |               |
| 11 |   | Understanding and   | Other formulations: Cp, | Lectures and | Oral tests    |
|    |   | applying complex    | Cv, and complex         | discussions  | and questions |
|    |   | thermodynamic       | calculations            |              | 1             |

|     |                                      | T                         |                       |               |
|-----|--------------------------------------|---------------------------|-----------------------|---------------|
|     | formulations                         |                           |                       |               |
|     | involving specific                   |                           |                       |               |
|     | heat capacities for                  |                           |                       |               |
|     | advanced problem-                    |                           |                       |               |
|     | solving                              |                           |                       |               |
| 12  | Understanding the                    | Thermodynamic             | Lectures and          | Oral tests    |
|     | thermodynamic                        | properties of ideal gases | discussions           | and questions |
|     | properties of ideal                  |                           | <b>312 C 312 C 11</b> | unu questisno |
|     | gases and                            |                           |                       |               |
|     | calculating entropy                  |                           |                       |               |
|     | changes in both                      |                           |                       |               |
|     | reversible and                       |                           |                       |               |
|     | irreversible                         |                           |                       |               |
|     | processes                            |                           |                       |               |
| 13  | Understanding the                    | PVT behavior and          | Lectures and          | Oral tests    |
|     | thermodynamic                        | corresponding states      | discussions           |               |
|     | properties of real                   | corresponding states      | uiscussions           | and questions |
|     | gases, analyze PVT                   |                           |                       |               |
|     | behavior, and                        |                           |                       |               |
|     | applying the laws of                 |                           |                       |               |
|     | corresponding states                 |                           |                       |               |
|     | and relevant                         |                           |                       |               |
|     |                                      |                           |                       |               |
|     | equations to study<br>fluid behavior |                           |                       |               |
| 1.4 |                                      | DVT1-4:1:1                | T 4                   | 0144          |
| 14  | Exploring                            | PVT relationships and     | Lectures and          | Oral tests    |
|     | approaches to PVT                    | compressibility           | discussions           | and questions |
|     | relationships for                    | factors for non-ideal     |                       |               |
|     | non-ideal gases                      | gases                     |                       |               |
|     | and understanding                    |                           |                       |               |
|     | how to apply                         |                           |                       |               |
|     | compressibility                      |                           |                       |               |
|     | factors in solving                   |                           |                       |               |
|     | related problems                     |                           |                       |               |
| 15  | -                                    | Companized aquations      | Lectures and          | Oral tests    |
| 15  | Learning to use                      | Generalized equations     |                       | Oldi tests    |
|     | generalized                          | of state and property     | discussions           | and questions |
|     | equations of state                   | estimation                |                       |               |
|     | for estimating                       |                           |                       |               |
|     | thermodynamic                        |                           |                       |               |
|     | properties of fluids                 |                           |                       |               |
|     | Reviewing key                        | Preparatory week          | Lectures and          | Oral tests    |
|     | concepts,                            | before the final Exam     | discussions           | and questions |
|     | consolidate their                    | Sololo ino imai E/Aulii   | G150G5510115          | ana questions |
|     |                                      |                           |                       |               |
| 1.6 | understanding, and                   |                           |                       |               |
| 16  | prepare effectively                  |                           |                       |               |
|     | for the final exam                   |                           |                       |               |
|     | through targeted                     |                           |                       |               |
|     | revision and                         |                           |                       |               |
|     | practice                             |                           |                       |               |
| l l | Practice                             | I                         |                       |               |

1. البنية التحتية

| [1] Abbott, Michael M., Joseph M. Smith, and Hendrick    | 1. الكتب المقررة المطلوبة |
|----------------------------------------------------------|---------------------------|
| C. Van Ness. "Introduction to chemical engineering       | <i>y y</i> .              |
| thermodynamics." McGraw-Hill.                            |                           |
| [2] Elliott, J. Richard, and Carl T. Lira. "Introductory |                           |
| chemical engineering thermodynamics". Upper Saddle       |                           |
| River, NJ: Prentice Hall PTR.                            |                           |
| [3] Narayanan, K. V.A chemical engineering               |                           |
| thermodynamics. PHI Learning Pvt. Ltd.                   |                           |

## 11.التخطيط للتطور الشخصي

- التعليم الاكتروني
- استخدام وسائل الشبكة العنكبوتية والانترنيت

## 12.معيار القبول (وضع الأنظمة المتعلقة بالالتحاق بالكلية أو المعهد)

القبول المركزي حسب معدل الطالب

## 13.أهم مصادر المعلومات عن البرنامج

Abbott, Michael M., Joseph M. Smith, and Hendrick C. Van Ness. "Introduction to chemical engineering thermodynamics." McGraw-Hill

