وزارة التعليم العالي والبحث الطمي جهاز الإشسراف والنقويم العلمي دائرة ضمان الجودة والاعتماد الأكاديمي

استمارة وصف البرنامج الأكاديمي للعام الدراسي 2024-2025 للكليات والمعاهد

جامعة : جامعة شط العرب الاهلية

الكلية /المعهد: الكلية التقنية الهندسية

القسم العلمي القسم الطمي : قسم هندسة تقنيات الوقود والطاقة تاريخ ملء الملف : 2025/8/10

النونيع: المسلم : المسلم : المسلم المعاون العلمي: ١٥ - د . طحم السم رئيس القسم: المحمد 1010/10 الناريخ: 202/8/

دقق الملف من قبل شعبة ضمان الجودة والأداء الجامعي

اسم مدير شعبة ضمان الجودة والأداء الجامعي:

التاريخ ١ ١

مصادقة المسيد العميد

10/8/2025

وصف البرنامج الأكاديمي: ديناميك الحرارة 2

يوفر النموذج إيجازاً لأهم خصائص المقرر ومخرجات التعلم المتوقعة من الطالب.

1. المؤسسة التعليمية	جامعة شط العرب
2. القسم العلمي / المركز	الكلية التقنية الهندسية
 اسم البرنامج الأكاديمي او المهني 	قسم هندسة تقنيات الوقود والطاقة
4. اسم الشهادة النهائية	بكالوريوس هندسة
 النظام الدراسي : سنوي /مقررات/اخرى 	نظام بولونيا
6. برنامج الاعتماد المعتمد	
7. المؤثرات الخارجية الأخرى	لايوجد
8. تاريخ إعداد الوصف	2025-8-20
9. أهداف البرنامج الأكاديمي	

- توضيح المفاهيم الأساسية للقوانين الأولى والثانية للديناميكا الحرارية وتطبيقاتها.
 - تطوير المهارات العملية في حل مشاكل توازن الطاقة.
 - إظهار فهم أساسي لمبادئ الديناميكا الحرارية، وخصائص المواد النقية.
- وصف العمليات العكسية وغير العكسية، بما في ذلك كل من العمليات المثالية والحقيقية من منظور ماكروسكوبي.

10. مخرجات البرنامج المطلوبة وطرائق التعليم والتعلم والتقييم

- أ- المعرفة والفهم (الأهداف المعرفية):
- تحقیق فهم أساسی للمفاهیم الرئیسیة لدینامیك الحراره و خصائص المواد النقیة.
 - تعزيز مهارات الطلاب في حل المشكلات في توازن الطاقة.
- تحليل ووصف العمليات العكسية وغير العكسية، بما في ذلك خصائصها الماكر وسكوبية و التطبيقات العملية.
 - ب الأهداف المهار اتية الخاصة بالمقرر.
 - سيقوم الطلاب بتحليل البيانات التجريبية لتقييم أداء أنظمة الطاقة المختلفة، مع تحديد مجالات للتحسين و التطوير.
 - سيتناول الطلاب التحديات الهندسية المعقدة المتعلقة بديناميك الحراره مع ايجاد حلولًا فعالة لها.
 - سيقوم الطلاب بعرض النتائج الفنية والمقترحات المتعلقة بديناميك الحراره بشكل فعال.

طرائق التعليم والتعلم

الشرح والتوضيح (المحاضرة).

- طريقة التعلم الذاتي (تكليف الطلبة بإكمال تعلم بعض المهارات بعد إعطائهم أساسياتها).
 - عقد مناقشات جماعية.

طرائق التقييم

- الاختبارات النظرية المنتظمة والفجائية.
 - الواجبات والاختبارات العملية.
 - التقارير.

ج- الأهداف الوجدانية والقيمية

- تعزيز الاحترام و المسؤولية.
- تعزيز المواقف الإيجابية تجاه التعلم والتعاون والسلوك الأخلاقي
- د المهارات العامة والتأهيلية المنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصى).
 - تطوير قدرات الطلاب القيادية.
 - تحسين كفاءة الطلاب في تقديم المعلومات التقنية، وكتابة التقارير، وتوضيح النتائج.
- تطوير مهارات الطلاب التقنيه من خلال مشاركتهم في اجراء تجارب عمليه تتعلق بديناميك الحراره.
 - تشجيع الطلاب على التكيف مع التقنيات والمنهجيات الجديدة المرتبطه بديناميك الحراره.

طرائق التعليم والتعلم

- التدريب الميداني
 - المحاضرات
- امشاريع العمل الجماعي

يه المقرر	10- بنيه المقرر				
Week	No of Hours	Required Learning Output	Title of Subject	Teaching Method	Evaluation
1		Fugacity and fugacity coefficients of real gases standard states definition and choice,	Fundamental of Fugacity and its coefficients	Lectures and discussions	Oral tests and questions
2		Properties of Solutions Partial molar properties ideal and non-ideal solutions	Solution properties from a thermodynamics perspective	Lectures and discussions	Oral tests and questions
3		gibbs-duhem equation	Gibbs Energy and Mixtures	Lectures and discussions	Oral tests and questions

1	excess properties			
	of mixtures			
4	Phase Equilibria	Phase Equilibrium	Lectures and	Oral tests
7	Criteria for	Thase Equinorium	discussions	and questions
	equilibrium		discussions	and questions
	between phases in			
	multi component			
	non-reacting			
	systems in terms			
	of chemical			
	potential and			
	fugacity			
5	Application of	Phase Rule and	Lectures and	Oral tests
3	phase rule	Vapor-liquid	discussions	and questions
	vapor-liquid	equilibrium	discussions	and questions
	equilibrium,	- quinonum		
6	Phase diagrams for	Phase diagram	Lectures and	Oral tests
	homogeneous	i nase anagiani	discussions	and questions
	systems and for		aibeabiolib	and questions
	systems with a			
	miscibility gap			
	effect of			
	temperature and			
	pressure on			
	azeotrope			
	composition y			
7	liquid-liquid	Liquid Equilibrium	Lectures and	Oral tests
	equilibrium		discussions	and questions
	ternary liquid-			1
	liquid equilibrium.			
8	Activity	Activity Coefficient	Lectures and	Oral tests
	Coefficient		discussions	and questions
9	distillation and	distillation and liquid	Lectures and	Oral tests
	liquid extraction	extraction processes.	discussions	and questions
	processes.	1		_
10	Chemical Reaction	Chemical Reaction	Lectures and	Oral tests
	Equilibria	Equilibria	discussions	and questions
	The reaction	•		1
	coordinate			
	standard Gibbs-			
	energy change s			
11	Equilibrium	Equilibrium constant	Lectures and	Oral tests
			discussions	and questions
	constant	effect of temperature		1
	effect of	on equilibrium		
	temperature on	constant		

	equilibrium constant			
12	relation of equilibrium constants to composition(gas phase reaction and liquid phase), equilibrium conversion, multireaction equilibria s	relation of equilibrium constants to composition(gas phase reaction and liquid phase), equilibrium conversion, multireaction equilibria	Lectures and discussions	Oral tests and questions
13	Cycle Carnot refrigeration cycle air refrigeration cycle r	Cycle Carnot refrigeration cycle air refrigeration cycle	Lectures and discussions	Oral tests and questions
14	vapor compression cycles comparison of refrigeration cycles absorption refrigeration	vapor compression cycles comparison of refrigeration cycles absorption refrigeration	Lectures and discussions	Oral tests and questions
15	heat pump liquefaction processes.	heat pump liquefaction processes.	Lectures and discussions	Oral tests and questions
16	Preparatory week before the final Exam	Preparatory week before the final Exam	Lectures and discussions	Oral tests and questions

1. البنية التحتية

[1] Abbott, Michael M., Joseph M. Smith, and Hendrick	1. الكتب المقررة المطلوبة
C. Van Ness. "Introduction to chemical engineering	
thermodynamics." McGraw-Hill.	
[2] Elliott, J. Richard, and Carl T. Lira. "Introductory	
chemical engineering thermodynamics". Upper Saddle	
River, NJ: Prentice Hall PTR.	
[3] Narayanan, K. V.A chemical engineering	
thermodynamics. PHI Learning Pvt. Ltd	

التخطيط التطور الشخصي التعليم الاكتروني استخدام وسائل الشبكة العنكبوتية والانترنيت القبول القبول (وضع الأنظمة المتعلقة بالالتحاق بالكلية أو المعهد) القبول المركزي حسب معدل الطالب القبول المركزي حسب معدل الطالب Abbott, Michael M., Joseph M. Smith, and Hendrick C. Van Ness. "Introduction to chemical engineering thermodynamics." McGraw-Hill

