المعالمة الم

Course Description Form

Description of the location

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of the available learning opportunities. It must be linked to the course .description .The program

Shatt al-Arab University	1 Educational institution .
Computer Science	2 Scientific Department / Center.
/ Computational Theory CS205	3 Name/Code of the . headquarters
My presence	4 forms of Available . attendance
Second semester/ 2024-2025	5 semester/year.
125	6 Number of study hours (total) .
August 5, 2025	7 Date this description was . prepared

8 Course objectives.

aims to introduce students to the core field of computer science, enabling them course to focus on the study of abstract computational models. These abstract models allow students to evaluate, through logical reasoning, what computation can achieve when used to solve science and engineering problems. This course aims to enable them to answer fundamental questions about problems, such as whether they are computable. The course introduces basic computational models and their properties. Students will be able to express computer science problems as mathematical statements and .formulate proofs

Course outcomes, teaching, learning and assessment methods .9

A- Knowledge and understanding:

- Clarifying the basic concepts in computing theory through a set of tools.
- Acquire problem-solving skills.
- Acquire basic skills as an introduction to language building.
- ,Acquire theoretical concepts for dealing with machine learning mechanisms functional expression mechanisms(DFA) non-functional functional expression , mechanisms(NFA) stack mechanisms ,, Turing machines, and rules.
- B- Subject-specific skills:

The ability to design (functional expression mechanisms, non-functional functional -1 expression mechanisms, grammar, language modeling, and the basics of small (compilers.

.The ability to think about solving the problem according to specific rules -2 Writing scientific reports -3.

.Knowing the comparison between (natural and formal languages) -4

A- Cognitive objectives

computational theory is defined as the branch of study that studies whether and how, problems can be efficiently solved using a computational model and algorithm. This field is divided into three main branches: automata theory, computability theory, and computational complexity theory.

theory is to develop a formal mathematical model of computing that reflects reality.

Computers.

The student can review these basic topics to guide him in the field of computational theory. These topics are: (computational theory, language concepts, grammar concepts, finite state machines, deterministic finite automata, non-deterministic finite state machines, regular languages, regular expressions, pumping theorem, free ,grammarsFSM summary .(free languages, ambiguity,

B-Skill objectives of the course

- Readings, self-learning, discussion groups.
- Classroom exercises and activities.
- Directing students to some websites to benefit from them in developing their skills.
- Holding research seminars to explain and analyze some problems and the mechanism for finding solutions.

Write something like: The main strategy used in teaching this unit is to encourage students to participate in exercises, while honing and expanding their critical thinking skills. This will be achieved through classroom instruction, interactive lessons, and the study of simple experiments that include some sample activities that interest the .students

Teaching and learning methods

Evaluation methods
Evaluation methods
C- Emotional and value goals
C Emotional and value goals
Teaching and learning methods
Learning and Teaching Possuress
Learning and Teaching Resources

Learning and Teaching Resources					
	sources learning and teaching				
	Text	Available in the Library?			
Required Texts (Michael (Sipser), Introduction to the Theory of computation		Yes			
	(Third Edition).				
Recommended Texts	Theory of Computation Simplified , (Varsha H. Patil ,	No			
Recommended Texts	Vaishali S. Pawar Swati A. Bhavsar) , 2022 .	INO			
Websites	https://elc.uobasrah.edu.iq/enrol/index.php?id=72				

Evaluation methods

Module Evaluation						
evaluation The material Academic						
		Time/Nu	Weight (Marks)	Week Due	Relevant Learning	
		amber	vveignt (iviaiks)	Week Due	Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hours	10% (10)	7	LO # 1- 7	

assessment	Final Exam	2 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

- D General and transferable skills (other skills related to employability and . (personal development
- -1
- -2
- **-**3
- -4

Course structure .10

Learning	Unit name/topic	Required	watches	week
method		learning		
		outcomes		
In-person lecture	General information		8	the first
Reports	about computing.			
project	- Information			
Quick test	representation.			
	- Arithmetic problems.			
	- Properties of arithmetic			
	problems			
	Computational theory -			
In-person lecture	Language concepts -		8	the second
Reports	Grammar concepts -			
project	Chomsky's classification			
Quick test	of grammar			
	Finite state machine			
	How does the machine -			
	?work			
In-person lecture	A machine's view of -		8	the third
Reports	the finite state machine			
project				

Quick test	How to define a finite -		
	state machine		
	Finite state machine		
	diagrams		
	Properties of a state -		
	machine		
	Deterministic finite state		
) machineDFA (
	Examples of finite state -		
	.machine		
In-person lecture	Nondeterministic finite	8	Fourth
Reports) state machineNFA (
project	Running a finite state -		
Quick test) machineNFA (
	Examples of non-		
	deterministic finite state		
	machines		
	Finite State Machine - 8		
	vs. Non-Deterministic		
	Finite State Machine		
In-person lecture	Machine equivalence	8	Fifth
Reports	Example of equivalent		
project	machines		
Quick test	Proof by construction		
In-person lecture	Properties of regular -	8	Sixth
Reports	languages		
project	Definition of regular		
Quick test	languages		
	The union process and -		
	examples of it		
	The sequencing -		
	process and examples		
	of it		
	Star process and -		
	examples		
In-person lecture	•		•
	Properties of regular -	8	Seventh

project	Definition of regular		
Quick test	languages		
	The union process and -		
	examples of it		
	The sequencing -		
	process and examples		
	of it		
	Star process and -		
	examples		
In-person lecture	-DFA minimization	8	The eighth
Reports	Equivalence theory -		
project	Equivalent -DFA plot		
Quick test	Minimize the way to fill -		
	out theDFA table		
In-person lecture	Myhill-Nerod theory -	8	Ninth
Reports	Regular languages and		
project	examples		
Quick test	Regular expressions		
	and examples		
In-person lecture	Automata theory -	8	tenth
Reports	,(basics, inferences		
project	priority of operators		
Quick test	,examples, identities		
	facts)		
	-RE parity .and automata		
In-person lecture	Convert -RE toε-NFA	8	eleventh
Reports	Constructing the -ε-NFA		
project	formula		
Quick test	Convert -RE toε-NFA:		
	,union, concatenation)		
	(closure, examples		
	Convert -DFA toRE		
	Algebraic laws of -RE		
In-person lecture	Converting automata to	8	twelfth
Reports	regular expressions		
project	using case deletion		
Reports	regular expressions	8	tweirin

Quick test	Pumping the theorem		
	Converting the theory -		
	into a regular proof		
	language		
	Converting the theory -		
	into an irregular proof		
	language		
	Pigeonhole Principle and		
	FSA		
In-person lecture	Theory - Long chains -	8	thirteenth
Reports	Line of reasoning -		
project	Examples of pumping		
Quick test	the theorem		
In-person lecture	Free Grammar	8	fourteenth
Reports	FSM Summary		
project	Free languages -		
Quick test	Chomsky's sequence		
In-person lecture	Derivation of free -	8	fifteenth
Reports	languages		
project	,Derivation trees -		
Quick test	examples		
	Ambiguity, examples -		
In-person lecture	Preparatory week before	5	sixteenth
	the final exam		

Infrastructure .11	
nothing	Required textbooks -1
Computational Theory - Dr. Abdul-Hussein Mohsen, University of Basra	Main references (sources) -2

(Michael Sipser), Introduction to the Theory of computation (Third Edition). Theory of Computation Simplified, (Varsha H. Patil,	a) Recommended books and ,references (scientific journals (.reports, etc
Vaishali S. Pawar ,Swati A. Bhavsar), 2022.	
	, b) Electronic references
	.websites, etc

Curriculum development plan .12						

