Course Description Form Course description | This course description provides a concise summar | of the main features of the course and the | learning outcomes expected of the student. | |---|--|--| |---|--|--| Demonstrating whether the student has made the most of the learning opportunities available. This must be linked to the program description. | Shatt al-Arab Private University / College of Scien | ce 1. Educational institution | | | |---|-------------------------------|--|--| | Department of Computer Science | .2 Scientific | | | | | Department/ Center | | | | Advanced Data Structures | .3 Course Name/Code | | | | | | | | | Mandatory attendance | 4. Forms of attendance | | | | | Available | | | | First semester 2023-2024 | .5 Semester/Year | | | | | | | | | 4 | .6 Number of study | | | | | hours (total) | | | | | .7 Date this description was | | | | | prepared | | | | | 8. Course objectives | | | | | | | | | 1- Study the different methods and techniques through which the logical perception of data is translated. | | | | | | | | | | 2. The programmer's interest in the different ways of organizing data. | | | | | 3. Pay attention to the algorithms and their analysis necessary to process this data in computer memory. | | | | | .4 In addition to teaching the student algorithm design, it also increases knowledge and learning programming in the Java language. | 9. Course outcomes, teaching, learning and assessment met | thods | |--|------------| | Cognitive of | objectives | | - Teaching the student how to interact well with the | ne calcula | | A2 - Developing the student's ability to solve problems using the c | alculator | | - Developing the student's understanding of determining what the inputs are and the processing method to ultimately obtain the requi | red outpu | | - Developing the method of programming thinking using algorithms as a method for solv | ving probl | | A5- Developing the student's programming style using all the main principles | | | in Java. A6- Developing the student's ability to design and implement programs. | | | B - Course specific skill objectives. B1 - Using | | | programming language to solve mathematical problems B2 - Using programming lang | luage | | A Programming in Electronic Circ | cuit Desi | | B 3 - Using the programming language to convert many algorithms into progra | ams | | Teaching and learning methods | | | | | | 1- Theoretical lectures reinforced with illustrative examples using presen | itation to | | 2- Lab | oratorie | | 3- Semina | rs 4- | | Proj | jects | | | | | | | | Evaluation methods | | | -1 Monthly exams -2 | | | Instant exam | ns | | -3 Practical exams | 8 | | | | | -4 Scientific reports | | | Emotional and value-based objective | es | | C- C-1 Benefiting from daily experiences and human behaviors in solving problems and transferring them to | | | the computer C-2 Developing the student's existing skills and employing them in solving | | | problems C-3 Instilling a spirit of creativity in the student | | | | | | | | | | -1 Theoretical lectures reinforced with illustrative examples that foster a spirit of interaction and discussion among students2 Laboratory experiments that reinforce the theoretical material. | |---|--| | | - i i necreucal rectures remorced with illustrative examples that toster a spirit of interaction and discussion among students 2 Lacoratory experiments that remorce the theoretical material. | | | | | | | | | Evaluation methods | | | | | | 11- Continuous evaluation and | | | follow-up of students 2- Focus on individual and group skills of | | | students 3- Evaluation of the completion of homework and other tasks given during lectures | | | | | | | | | General and Transferable Skills (other skills related to employability and personal development). D1 - The student learns how to use a calculator and its peripheral | | | D2 - Learns how to communicate in | | | his/her field of expertise. D3 - Through his/her knowledge of | | F | programming languages, he/she learns how to build display interfaces to create communication between the calculator and the user. D4 - Learns how to correct | | | programming errors as he/she learns the philosophy of problem solving. | 10. Coui | rse structure | |----------------|------------------------------------|--|---|----------|---------------| | road
 | road | Unit name/topic | Required learning outco | watches | The week | | Oral questions | Theoretical | Search and sort | Search and | 4 | 1 | | | practical approach | algorithms | algorith
ms | | | | Oral questions | Theoretical and practical approach | Analysis of run
time | Analysis of run time | 4 | 2 | | Oral questions | Theoretical and practical approach | Inheritance and polymorphism sorting and searching | Inheritance and polymorph ism sorting and searching | 4 | 2 | | Oral questions | For a
theoretical
and practical app | • Graphs | Graphs | 4 | 2 | |----------------|---|--|---|----|------------------------------| | Oral questions | For a
theoretical
and practical app | Tree, binary
Tree, balanced
tree | Tree,
binary
Tree,
balanced | 8 | 2 | | Oral question | For a theoretical and practical app | heap, priority
queue, heap
sort | tree
heap,
Priorit
y
queue,
heap
sort | 8 | 2 | | Oral question | For a theoretical and practical app | Hashing, linear hash table, and chained hash table | Hashing,
linear
hash
table, and
chained
hash | 8 | 2 | | | | | table | | | | Da | ata structur | e and algorithms in java,
Fourth edition, Michael 1
Goodnch, Rober
Tamass | rto | | 1 Infrastructure | | | | | | 2- | - Main reference
(Sources | | cnine i ransiai | ted by Goog | gie | | |-----------------|-------------|-----|---| A- Recommended books and references | | | | | journalsRejports (scientific | | | | | | | | | | | | | | | B - Electronic references, websites The Internet | ! | | | | | | | | | | | | | | | | | | | Dean of the College Head of Department Subject lecturer Jan 1