Ministry of Higher Education and Scientific Research Supervision and Scientific Evaluation Authority Department of Quality Assurance and Academic Accreditation ## Academic Program Description Form for Colleges and Institutes Academic Year University: Shatt Al-Arab College/Institute: Engineering Scientific Department: Civil **Date of Form Completion:** 01/09/2024 Signature Asst. Lecturer Nabeel Najm Abdullah Name of Head of Department: Signature Name of Scientific Assistant: Dr. Jawad Kadhim Reviewed by: **Quality Assurance and University Performance Division Name of Division Director:** Dr. Jasem Mohsen Yasser Signature: ا.م.د.احسان قاسم محمد عمید کلیة الدندسة Dean's Approval ## MODULE DESCRIPTION FORM ## نموذج وصف المادة الدراسية | Module Information
معلومات المادة الدر اسية | | | | | | | | |--|-----------------|----------------------|-------------------------------|--------------------------|-----------------|-------|--| | Module Title | | Mathematics 1 | | Modu | le Delivery | | | | Module Type | | Basic | | | ☐ Theory | | | | Module Code | | E112 | | | □ Lecture □ Lab | | | | ECTS Credits | | 8 | | | ☐ Tutorial | | | | SWL (hr/sem) | | | | ☐ Practical
☐ Seminar | | | | | Module Level | | 1 | Semester of Delivery | | 1,2 | | | | Administering Dep | partment | Type Dept. Code | College Type College Code | | | | | | Module Leader | Nabil najm | | e-mail | | | | | | Module Leader's Acad. Title | | Lecturer | Module Leader's Qualification | | alification | M.Sc. | | | Module Tutor | Shahid Mohammed | | e-mail | E-mail | | | | | Peer Reviewer Name | | Name e-mail | | E-mail | E-mail | | | | Scientific Committee Approval Date | | 01/09/2024 | Version Number 1.0 | | | | | | Relation with other Modules | | | | | | | | |-----------------------------------|------|----------|--|--|--|--|--| | العلاقة مع المواد الدراسية الاخرى | | | | | | | | | Prerequisite module | None | Semester | | | | | | | Co-requisites module | None | Semester | | | | | | | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |---|---|--|--|--|--| | | أهداف المادة الدراسية ونتائج التعلم والمحتويات الارشادية | | | | | | Module Aims
أهداف المادة الدر اسية | Good understanding of General Mathematics. To give information about Integrations and derivations and how they are used in the physics field. Helping students to connect mathematics with physics. solving mathematical examples in their physics modules. better understanding of integration and derivations and their importance of them in physics. | | | | | | Module Learning Outcomes مخرجات التعلم للمادة الدر اسية | After successful completion of the module, students should be able to: Work with functions represented in various ways: graphical, numerical, analytical, or verbal. They should understand the connections among these representations. The functions include linear, polynomial, absolute value, rational, exponential, logarithmic, trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, and piecewise defined functions. Define and apply the concepts of limits and continuity to the mentioned functions and study them graphically and analytically. Understand the meaning of the derivative in terms of a rate of change and local linear approximation, and should be able to use derivatives to solve a variety of problems. Understand the meaning of the definite integral both as a limit of Riemann sums as the net accumulation of change and should be able to use integrals to solve a variety of problems. Understand the relationship between the derivative and the definite integral as expressed in both parts of the Fundamental Theorem of Calculus. Use various integration techniques to obtain anti-derivatives without an integral table or calculator. | | | | | | Indicative Contents | | | | | | | المحتويات الارشادية | | | | | | | | Learning and Teaching Strategies
استراتیجیات التعلم والتعلیم | | | | | | Strategies | Different forms of teaching will be used to come across with objectives of the course. PowerPoint presentations for the head titles, definitions, graphs, and many useful illustrations with a summary at the end of each chapter will be presented and discussed. The PowerPoint contains information about new topics and unsolved examples, and then the whiteboard will be used to solve them and to let students to see the solutions. | | | | | | Student Workload (SWL) | | | | | | | | |---|-----|---|-----|--|--|--|--| | الحمل الدر اسي للطالب محسوب لـ 15 اسبو عا | | | | | | | | | Structured SWL (h/sem) Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا الحمل الدراسي المنتظم للطالب أسبوعيا | | | | | | | | | Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل | 108 | Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا | 7.2 | | | | | | Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل | 250 | | | | | | | | | | | | | _ | | | _ | | | |----|--------|---|---|---|-------------|-----|----|----|-----|---| | V | \sim | A | | | E١ | 12 | | 2+ | io | | | IV | IU | u | u | ı | $rac{1}{2}$ | ıaı | IU | aι | IUI | ш | تقييم المادة الدراسية | | | Time/Nu
mber | Weight (Marks) | Week Due | Relevant Learning Outcome | |------------------|-----------------|-----------------|------------------|----------|---------------------------| | | Quizzes | 2 | 10% (10) | | | | Formative | Assignments | 2 | 10% (10) | | | | assessment | Projects / Lab. | 1 | 10% (10) | | | | | Report | 1 | 10% (10) | | | | Summative | Midterm Exam | 2hr | 10% (10) | | | | assessment | Final Exam | 2hr | 50% (50) | 16 | All | | Total assessment | | | 100% (100 Marks) | | | ## Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري | | Material Covered | |--------|--| | Week 1 | Algebraic Preliminaries | | | Numbers, Sets, Inequalities & Absolute value. | | Week 2 | Functions | | | Domain, Range, graphs, Symmetry, Asymptotes. | | Week 3 | Limits | | WCCKS | Definition of Limit, Theorems, Continuity, One-Sided Limits, Limits at Infinity, L Hopital's rule. | | | Derivatives | | Week 4 | Definition, Power and Sum Rules, Product and Quotient Rules, Chain rule, High-Order derivatives, Implicit | | | differentiation. | | | Applications of Derivative | | Week 5 | Maximum and minimum, mean value theorem, Increasing and Decreasing Functions, Concavity and Points of | | | inflection, Second Derivative Test. | | | 1 | | Week 6 | Definite Integration | | | Definition, Integral Theorems, Length of a Curve, Areas, Volume of Solids, Surface Area, Indefinite Integrals. | | | Transcendental Functions | | Week 7 | Trigonometric Functions, Graphs, Derivatives of trigonometric functions, Inverse trigonometric functions, | | Trock? | Graphs, Derivatives of Inverse trigonometric functions, Natural Logarithm Functions, Exponential Functions, | | | Functions a ^u and log _a u. | | | 1 | | Week 8 | Complex Number Invented number systems, The Argand diagram. Addition, Subtraction, product, Qutient, Power and Roots. Demoivers theorem. | |---------|--| | Week 9 | Hyperbolic Functions Definition, Derivatives, Integrals, Inverse Hyperbolic Functions. | | Week 10 | Plane Analytic Geometry Circle, Parabola, Ellipse, Hyperbola | | Week 11 | Volume of Revolution Disk Method & Washer Method | | Week 12 | Volume of Revolution Volumes by Cylindrical Shells & solid with known cross sections | | Week 13 | Methods of Integrations Integration by substitution, Trigonometric Integrals & Quadratic Functions | | Week 14 | Methods of Integrations Integration by Parts, Integration by partial fractions, Integration of Rational Functions, improper integrals. | | Week 15 | Matrices and Determinates Definition, Properties of Matrices, Operations on Matrices, Determinants, Matrix Inverse, Solution of Linear Simultaneous Equations (Gramer's Rule). | | Week 16 | Preparatory week before the final Exam | | Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر | | | | | | | |---|------------------|--|--|--|--|--| | | Material Covered | | | | | | | Week 1 | | | | | | | | Week 2 | | | | | | | | Week 3 | | | | | | | | Week 4 | | | | | | | | Week 5 | | | | | | | | Week 6 | | | | | | | | Week 7 | | | | | | | | Learning and Teaching Resources
مصادر التعلم والتدريس | | | | | | | |--|--|-----|--|--|--|--| | Text Library? | | | | | | | | Required Texts | Calculus with Analytical Geometry, Fourth Edition,
By Robert Ellis and Denny Gulick, 1990. Calculus, Fifth Edition, By Stanley I. Cross may1992. Calculus, International Edition, By Thomas, 2005. | Yes | | | | | | Recommended Texts | 1. Calculus, 11th Edition, By Thomas, 2013. 2. Understanding Basic Calculus, by S.K. Chung, 2007 | | |-------------------|--|--| | Websites | | | | Grading Scheme
مخطط الدرجات | | | | | | | | | |--------------------------------|-------------------------|---------------------|-----------|---------------------------------------|--|--|--|--| | Group | Grade | التقدير | Marks (%) | Definition | | | | | | | A - Excellent | امتياز | 90 - 100 | Outstanding Performance | | | | | | | B - Very Good | جيد جدا | 80 - 89 | Above average with some errors | | | | | | Success Group
(50 - 100) | C - Good | ختر | 70 - 79 | Sound work with notable errors | | | | | | (30 - 100) | D - Satisfactory | متوسط | 60 - 69 | Fair but with major shortcomings | | | | | | | E - Sufficient | مقبول | 50 - 59 | Work meets minimum criteria | | | | | | Fail Group | FX – Fail | راسب)قيد المعالجة(| (45-49) | More work required but credit awarded | | | | | | (0 – 49) | F – Fail | راسب | (0-44) | Considerable amount of work required | | | | | | | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.