
Logic Design



Number Systems



Decimal Numbers

You are familiar with the decimal number system because you use decimal numbers 

every day. Although decimal numbers are commonplace, their weighted structure is 

often not understood.

The decimal number system has ten digits.

In the decimal number system each of the ten digits, 0 through 9. When we write 

decimal (base 10) numbers, we use a positional notation; each digit is multiplied by an 

appropriate power of 10 depending on its position in the number.



example



The decimal number system has a base of 10

The position of each digit in a decimal number indicates the magnitude of the 

quantity represented and can be assigned a weight. The weights for whole 

numbers are positive powers of ten that increase from right to left, beginning with 

100 = 1.
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Binary Numbers

The binary number system is another way to represent quantities. the binary 

system with its two digits is a base-two system. The two binary digits (bits) are 1 

and 0. The position of a 1 or 0 in a binary number indicates its weight, or value 

within the number, just as the position of a decimal digit determines the value of 

that digit. The weights in a binary number are based on the powers of the number 

two.



Counting in Binary

A comparable situation occurs when you count in binary, except that you have 

only two digits, called bits. Begin counting: 0, 1. At this point, you have used both 

digits, so include another digit position and continue: 10, 11. You have now 

exhausted all combinations of two digits, so a third position is required. With three 

digit positions, you can continue to count: 100, 101, 110, and 111. Now you need 

a fourth digit position to continue, and so on.





The value of a bit is determined by its position in the 

number
In general, with n bits you can count up to a number equal to 2n - 1.

Largest decimal number = 2n - 1

For example, with five bits (n = 5) you can count from zero to thirty-one.

25 - 1 = 32 - 1 = 31

With six bits (n = 6) you can count from zero to sixty-three.

26 - 1 = 64 - 1 = 63



The Weighting Structure of Binary Numbers

A binary number has a different associated “weight”, a bit increases from right to 

left in a binary number. The right-most bit has a weight of 20 = 1. The weights 

increase from right to left by a power of two for each bit. The left-most bit's weight 

depends on the size of the binary number.

..... 24 23 22 21 20

.....16  8  4  2  1 



Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all 

bits that are 1 and discarding the weights of all bits that are 0.

Add the weights of all 1s in a binary number to get the decimal value.



Decimal-to-Binary Conversion

Now you will learn two ways of converting from a decimal number to a binary 

number.

● Sum-of-Weights Method

● Repeated Division-by-2 Method



Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is 

to determine the set of binary weights whose sum is equal to the decimal number. 

for example

9 = 8 + 1 or 9 = 23 + 20

Placing 1s in the appropriate weight positions, 23 and 20, and 0s in the 22 and 21

positions determines the binary number for decimal 9.

23 22 21 20

1   0  0  1       Binary number for decimal 9



Sum-of-Weights (Decimal Fractions )

The sum-of-weights method can be applied to fractional decimal numbers, as 

shown in the following example:

0.625 = 0.5 + 0.125 

=   2-1 +    2-3 = 0.101

There is a 1 in the 2-1 position, a 0 in the 2-2 position, and a 1 in the 2-3 position.



Repeated Multiplication by 2

Decimal fractions can be converted to binary by repeated multiplication by 2.

H.W. convert number from 39.2510 to binary



Octal Numbers

the octal number system provides a convenient way to express binary numbers 

and codes.

The octal number system is composed of eight digits, which are

0, 1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 



The octal number system has a base of 8.

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 

are not used. To distinguish octal numbers from decimal numbers or hexadecimal 

numbers, we will use the subscript 8 to indicate an octal number.

Weight: 83 82 81 80



Octal-to-Decimal Conversion

The evaluation of an octal number in terms of its decimal equivalent is 

accomplished by multiplying each digit by its weight and summing the products, as 

illustrated here for 23748.

Weight: 83 82 81 80

Octal number:  2  3  7  4

23748 = (2 * 83) + (3 * 82) + (7 * 81) + (4 * 80)

= (2 * 512) + (3 * 64) + (7 * 8) + (4 * 1)

=    1024    +   192 +    56 +      4      = 127610



Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated 

division by- 8 method, which is similar to the method used in the conversion of 

decimal numbers to binary

H.W. convert number 62410 to Octal



Octal-to-Binary Conversion

octal is a convenient way to represent binary numbers Because each octal digit 

can be represented by a 3-bit binary number, it is very easy to convert from octal 

to binary. 

To convert an octal number to a binary number, simply replace each octal digit 

with the appropriate three bits.



Binary-to-Octal Conversion

The procedure is as follows: 

- Start with the right-most group of three bits and, moving from right to left, 

convert each 3-bit group to the equivalent octal digit

- If there are not three bits available for the left-most group, add either one or 

two zeros to make a complete group



Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a 

compact way of displaying or writing binary numbers because it is very easy to 

convert between binary and hexadecimal



The hexadecimal number system has a base of sixteen

that is, it is composed of 16 numeric 

and alphabetic characters.The 

hexadecimal number system consists of 

digits 0–9 and letters A–F. Most digital 

systems process binary data in groups 

that are multiples of four bits



Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with 

another column and continue as follows:

0 , 1 ,  2 ,  3 ,  4 ,  5 ,  6 ,  7 ,  8 ,  9 ,  A ,  B ,  C ,  D ,  E ,  F , 

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 

30, 31, ……



Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply 

break the binary number into 4-bit groups, starting at the right-most bit, and 

replace each 4-bit group with the equivalent hexadecimal symbol.



Hexadecimal-to-Binary Conversion

Hexadecimal is a convenient way to represent binary numbers.

Conversion between hexadecimal and binary is direct and easy.

To convert from a hexadecimal number to a binary number, reverse the process 

and replace each hexadecimal symbol with the appropriate four bits.

Since conversion is so easy, the hexadecimal system is widely used for 

representing binary numbers in programming, printouts, and displays.



Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert 

the hexadecimal number to binary and then convert from binary to decimal.



Hexadecimal-to-Decimal Conversion ( Another way )

Another way to convert a hexadecimal number to its decimal equivalent is to 

multiply the decimal value of each hexadecimal digit by its weight and then take 

the sum of these products. The weights of a hexadecimal number are increasing 

powers of 16 (from right to left). For a 4-digit hexadecimal number, the weights are

163 162 161 160

4096 256 16 1



Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent 

hexadecimal number, formed by the remainders of the divisions. 

The first remainder was produced in the least significant digit (LSD). Each 

successive division by 16 yields a remainder that becomes a digit in the equivalent 

hexadecimal number.

Note that when a quotient has a fractional part, the fractional part is multiplied by 

the divisor to get the remainder.



Hexadecimal-to-Octal Conversion

convert number from (AB3E.87D)16 to Octal

(AB3E.87D)16 = (1010101100111110.100001111101)2

001 010 101 001 111 110  . 100 001 111 101

1 2 5 4 7  6    .    4    1 

7    5

(AB3E.87D)16 = (125476.4175)8



Octal-to-Hexadecimal Conversion

convert number from 25.3428 to Hexadecimal

(25.342)8 = (010101.011100010)2

0001 0101 .   0111 0001

1      2     .     7      1

(25.342)8 = (12.71)16



Binary Arithmetic

Binary arithmetic is essential in all digital computers and in many other types of 

digital systems. To understand digital systems, you must know the basics of 

binary addition, subtraction, multiplication, and division. 



Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = 10 Sum of 0 with a carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the 

addition of two 1s yields a binary two (10). 



In binary 1 + 1 = 10, not 2.

When binary numbers are added, the last condition creates a sum of 0 in a given 

column and a carry of 1 over to the next column to the left, as illustrated in the 

following addition of 11 + 1:



When there is a carry of 1 This situation is illustrated as follows:

1 + 0 + 0 = 01 Sum of 1 with a carry of 0

1 + 1 + 0 = 10 Sum of 0 with a carry of 1

1 + 0 + 1 = 10 Sum of 0 with a carry of 1

1 + 1 + 1 = 11 Sum of 1 with a carry of 1



Binary Subtraction

The four basic rules for subtracting bits are as follows:

0 - 0 = 0

1 - 1 = 0

1 - 0 = 1

10 - 1 = 1 0 - 1 with a borrow of 1

In binary 10 - 1 = 1, not 9.



Binary Multiplication

The four basic rules for multiplying bits are as follows:

0 * 0 = 0

0 * 1 = 0

1 * 0 = 0

1 * 1 = 1



EXAMPLE

Perform the following binary divisions: (a) 110 / 11 (b) 110 / 10

H.W. Divide 1100 by 100.



Octal Addition

7 6 5 4 3 2 1 0 +

7 6 5 4 3 2 1 0 0

10 7 6 5 4 3 2 1 1

11 10 7 6 5 4 3 2 2

12 11 10 7 6 5 4 3 3

13 12 11 10 7 6 5 4 4

14 13 12 11 10 7 6 5 5

15 14 13 12 11 10 7 6 6

16 15 14 13 12 11 10 7 7



Subtraction in Octal System

The subtraction process in the octal system can be summarized as follows

If the first number is greater than or equal to the seconde , then the process of 

subtracting  is exactly the same in decimal numbers

But if the first number is less than the subtraction, then 1 is borrowed from the 

next column  . This one is expressed as octal 8. It is added to the column from 

which the subtraction is intended in the number subtracted from it, then the usual 

subtraction is done in the decimal system



Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the 

hexadecimal digits 0 through 9 are equivalent to decimal digits 0 through 9 and 

that hexadecimal digits A through F are equivalent to decimal numbers 10 through 

15.



Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary 

numbers. Since a hexadecimal number can be used to represent a binary number, 

it can also be used to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. 

Method 1 is the most common and easiest to use. Methods 2 and 3 are alternate 

methods.



EXAMPLE

Subtract the following hexadecimal numbers: (a) 8416 - 2A16 (b) C316 -

0B16

8416 C316

- 2A16 0B16

5A16 B816

H.W. Subtract 17316 from BCD16.



One's and Two's 

Complements of Binary 

Numbers



Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important 

because they permit the representation of negative numbers. The method of 2’s 

complement arithmetic is commonly used in computers to handle negative 

numbers.



Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 

0s to 1s, as illustrated below:

1 0 1 1 0 0 1 0 Binary number

0 1 0 0 1 1 0 1 1’s complement



Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s 

complement. 

2’s complement = (1’s complement) + 1



Change all bits to the left of the least significant 1 to get 2’s 

complement
Change all bits to the left of the least significant 1 to get 2’s complement

An alternative method of finding the 2’s complement of a binary number is as 

follows:

1. Start at the right with the LSB and write the bits as they are up to and including 

the first 1.

2. Take the 1’s complements of the remaining bits.



Representation of Negative Numbers (Signed Numbers)

In mathematics, when dealing with negative numbers we do use a -ve sign in front 

of the number to show that the number is negative in value and different from a 

positive unsigned value, and the same is true with signed binary numbers. 

However, in computer hardware, numbers are represented only as sequences of 

bits, without extra symbols



The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether 

the number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative 

number.



Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the leftmost bit is 

the sign bit and the remaining bits are the magnitude bits. The magnitude bits are 

in the true (uncomplemented) binary for both positive and negative numbers. For 

example, the decimal number +25 is expressed as an 8-bit signed binary number 

using the sign-magnitude form as



1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the 

positive sign-magnitude numbers. Negative numbers, however, are the 1’s 

complements of the corresponding positive numbers. For example, using eight 

bits, the decimal number -25 is expressed as the 1’s complement of +25 

(00011001) as 11100110 In the 1’s complement form, a negative number is the 

1’s complement of the corresponding positive number.



2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the 

sign-magnitude and 1’s complement forms. Negative numbers are the 2’s 

complements of the corresponding positive numbers. Again, using eight bits, let’s 

take decimal number -25 and express it as the 2’s complement of +25 

(00011001). Inverting each bit and adding 1, you get -25 = 11100111 In the 2’s 

complement form, a negative number is the 2’s complement of the corresponding 

positive number.



The Decimal Value of Signed Numbers

Sign-Magnitude Decimal values of positive and negative numbers in the sign-

magnitude form are determined by summing the weights in all the magnitude bit 

positions where there are 1s and ignoring those positions where there are zeros. 

The sign is determined by examination of the sign bit.



2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are 

determined by summing the weights in all bit positions where there are 1s and 

ignoring those positions where there are zeros. The weight of the sign bit in a 

negative number is given a negative value.



Arithmetic Operations with Signed Numbers

In this section, you will learn how signed numbers are added, subtracted, 

multiplied, and divided.

Because the 2’s complement form for representing signed numbers is the most 

widely used in computers and microprocessor-based systems, the coverage in 

this section is limited to 2’s complement arithmetic. The processes covered can be 

extended to the other forms if necessary.



Addition

There are four cases that can occur when two signed binary numbers are added.

1. Both numbers positive

2. Positive number with magnitude larger than negative number

3. Negative number with magnitude larger than positive number

4. Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples.



Both numbers positive:

00000111 7

+ 00000100 4

00001011 11

The sum is positive and is therefore in true (uncomplemented) binary.



The sum is positive and is therefore in true 

(uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111  15

+ 11111010  -6

1 00001001  9

The final carry bit is discarded. The sum is positive and therefore in true 

(uncomplemented) binary.



Negative number with magnitude larger than positive 

number:

00010000 16

+ 11101000 -24

11111000 -8

The sum is negative and therefore in 2’s complement form.



Both numbers are negative:

11111011  -5

+ 11110111   -9

1 11110010  -14

The final carry bit is discarded. The sum is negative and therefore in 2’s 

complement form.



Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the 

subtrahend) from +9 (the minuend) is equivalent to adding 26 to +9. Basically, the 

subtraction operation changes the sign of the subtrahend and adds it to the 

minuend. The result of subtraction is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s 

complement.



Multiplication

The numbers in multiplication are the multiplicand, the multiplier, and the product. 

These are illustrated in the following decimal multiplication:

8 Multiplicand

* 3 Multiplier

24 Product



Division

The numbers in a division are the dividend, the divisor, and the quotient. These 

are illustrated in the following standard division format.

dividend = quotient

divisor



Division

The division operation in computers is accomplished using subtraction. Since subtraction is done with an adder, division can also be 
accomplished with an adder. The result of a division is called the quotient; the quotient is the number of times that the divisor will go 
into the dividend. This means that the divisor can be subtracted from the dividend a number of times equal to the quotient, as illustrated 
by dividing 21 by 7.

21 Dividend

- 7 1st subtraction of divisor

14 1st partial remainder

- 7 2nd subtraction of divisor

7 2nd partial remainder

- 7 3rd subtraction of divisor

0 Zero remainder



Logic Gates



The Inverter

The inverter performs the operation called inversion or complementation. The inverter 

changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0 and 

a 0 to a 1.

The negation indicator is a “bubble” ( O ) that indicates inversion or complementation 

when it appears on the input or output of any logic element. Generally, inputs are on 

the left of a logic symbol and the output is on the right.



Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW level will appear on its 

output. When a LOW level is applied to its input, a HIGH will appear on its output. 

This operation is summarized in the next Table , which shows the output for each 

possible input in terms of levels and corresponding bits. A table such as this is 

called a truth table

Inverter truth table.

Input Output

LOW (0) HIGH (1)

HIGH (1) LOW (0)



Inverter Operation

the next Figure shows the output of an inverter for a pulse input, where t1 and t2 

indicate the corresponding points on the input and output pulse waveforms.

When the input is LOW, the output is HIGH; when the input is HIGH, the output is 

LOW, thereby producing an inverted output pulse.



Logic Expression for an Inverter

In Boolean algebra, which is the mathematics of logic circuits a variable is 

generally designated by one or two letters although there can be more. The 

complement of a variable is designated by a bar over the letter. A variable can 

take on a value of either 1 or 0. If a given variable is 1, its complement is 0 and 

vice versa.



The AND Gate

The AND gate is one of the basic gates that can be combined to form any logic 

function. An AND gate can have two or more inputs and performs what is known 

as logical multiplication.

The AND gate is composed of two or more inputs and a single output, as indicated 

by the standard logic symbols shown in the next  Figure. Inputs are on the left, 

and the output is on the right in each symbol. Gates with two inputs are shown; 

however, an AND gate can have any number of inputs greater than one. 



Operation of an AND Gate

For a 2-input AND gate, output X is HIGH only when inputs A and B are HIGH; X 

is LOW when either A or B is LOW, or when both A and B are LOW.



AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all 

input combinations with the corresponding outputs, as illustrated in the next Table 

for a 2-input AND gate. The truth table can be expanded to any number of inputs. 

Truth table for a 2-input AND gate.

Input

A                    b

Output

x

0 0 0

0 1 0

1 0 0

1 1 1



AND Gate Truth Table

The total number of possible combinations of binary inputs to a gate is determined 

by the following formula:

N = 2n

where N is the number of possible input combinations and n is the number of input 

variables.



The OR Gate

The OR gate is another of the basic gates from which all logic functions are 

constructed. An OR gate can have two or more inputs and performs what is 

known as logical addition.



Operation of an OR Gate

For a 2-input OR gate, output X is HIGH when either input A or input B is HIGH, or 

when both A and B are HIGH; X is LOW only when both A and B are LOW.



OR Gate Truth Table

The operation of a 2-input OR gate is described in Table . This truth table can be 

expanded for any number of inputs; but regardless of the number of inputs, the 

output is HIGH when one or more of the inputs are HIGH.

Truth table for a 2-input OR gate.

Input

A                    b

Output

x

0 0 0

0 1 1

1 0 1

1 1 1



The NAND Gate

The NAND gate is a popular logic element because it can be used as a universal 

gate; that is, NAND gates can be used in combination to perform the AND, OR, 

and inverter operations.

The term NAND is a contraction of NOT-AND and implies an AND function with a 

complemented (inverted) output. 



Operation of a NAND Gate

For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH;   

X is HIGH when either A or B is LOW, or when both A and B are LOW.



NAND Gate Truth Table

Truth table for a 2-input NAND gate.

Input

A                    b

Output

x

0 0 1

0 1 1

1 0 1

1 1 0



The NOR Gate

The NOR gate, like the NAND gate, is a useful logic element because it can also 

be used as a universal gate; that is, NOR gates can be used in combination to 

perform the AND, OR, and inverter operations.



Operation of a NOR Gate

For a 2-input NOR gate, output X is LOW when either input A or input B is HIGH, 

or when both A and B are HIGH; X is HIGH only when both A and B are LOW.



NOR Gate Truth Table

Table is the truth table for a 2-input NOR gate.

Truth table for a 2-input NOR gate.

Input

A                    b

Output

x

0 0 1

0 1 0

1 0 0

1 1 0



Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as

X = A + B

A B A  B  X

0 0 0 + 0 = 0 = 1

0 1 0 + 1 = 1 = 0

1 0 1 + 0 = 1 = 0

1 1 1 + 1 = 1 = 0



The Exclusive-OR Gate

Exclusive-OR gates connected to form an adder circuit allow a processor to perform 

addition, subtraction, multiplication, and division in its Arithmetic Logic Unit (ALU). An 

exclusive-OR gate combines basic AND, OR, and NOT logic.

Standard symbols for an exclusive-OR (XOR for short) gate are shown in the next 

Figure. The XOR gate has only two inputs. The exclusive-OR gate performs modulo-2 

addition. The output of an exclusive-OR gate is HIGH only when the two



Operation of an exclusive-OR Gate

For an exclusive-OR gate, output X is HIGH when input A is LOW and input B is 

HIGH, or when input A is HIGH and input B is LOW; X is LOW when A and B are 

both HIGH or both LOW.



exclusive-OR Gate Truth Table

The operation of an XOR gate is summarized in the truth table

Truth table for a 2-input exclusive-OR gate.

Input

A                    b

Output

x

0 0 0

0 1 1

1 0 1

1 1 0



The Exclusive-NOR Gate

Standard symbols for an exclusive-NOR (XNOR) gate are shown in the next 

Figure. Like the XOR gate, an XNOR has only two inputs. The bubble on the 

output of the XNOR symbol indicates that its output is opposite that of the XOR 

gate.



Operation of an exclusive-NOR Gate

For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is 

HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both HIGH 

or both LOW.



exclusive-NOR Gate Truth Table

The operation of an XNOR gate is summarized in Table. Notice that the output is 

HIGH when the same level is on both inputs.

Truth table for a 2-input exclusive-NOR gate.

Input

A                    b

Output

x

0 0 1

0 1 0

1 0 0

1 1 1



Boolean Algebra



Boolean Operations and Expressions

Boolean algebra is the mathematics of digital logic. A basic knowledge of Boolean 

algebra is indispensable to the study and analysis of logic circuits

A variable is a symbol (usually an italic uppercase letter or word) used to 

represent an action, a condition, or data. 

The complement is the inverse of a variable and is indicated by a bar over the 

variable (overbar).



Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and 

multiplication, the associative laws for addition and multiplication, and the 

distributive law—are the same as in ordinary algebra. Each of the laws is 

illustrated with two or three variables, but the number of variables is not limited to 

this.



Commutative Laws

The commutative law of addition for two variables is written as

A + B = B + A 



Commutative Laws

The commutative law of multiplication for two variables is

AB = BA 



Associative Laws

The associative law of addition is written as follows for three variables:

A + (B + C) = (A + B) + C



Associative Laws

The associative law of multiplication is written as follows for three variables:

A(BC) = (AB)C 



Distributive Law

The distributive law is written for three variables as follows:

A(B + C) = AB + AC 



Laws and Rules of Boolean Algebra

Basic rules of Boolean algebra.

1. A + 0 = A 7. A * A = A

2. A + 1 = 1 8. A * A = 0

3. A * 0 = 0 9. A = A

4. A * 1 = A 10. A + AB = A

5. A + A = A 11. A + AB = A + B

6. A + A = 1 12. (A + B)(A + C) = A + BC



Rule 1: A + 0 = A 



Rule 2: A + 1 = 1 



Rule 3. A * 0 = 0 



Rule 4. A * 1 = A 



Rule .5 A + A = A



Rule 6. A + A = 1



Rule 7. A * A = A



Rule 8. A * A = 0



Rule 9. A = A



Rule 10: A + AB = A

A + AB = A * 1 + AB = A(1 + B) Factoring (distributive law)

= A * 1 Rule 2: (1 + B) = 1

= A Rule 4: A * 1 = A



Rule 10: A + AB = A



Rule 11: A + AB = A + B

A + AB = (A + AB) + AB Rule 10: A = A + AB

= (AA + AB) + AB Rule 7: A = AA

= AA + AB + AA + AB Rule 8: adding AA = 0

= (A + A)(A + B) Factoring

= 1 * (A + B) Rule 6: A + A = 1

= A + B Rule 4: drop the 1



Rule 11: A + AB = A + B



Rule 12: (A + B)(A + C) = A + BC

(A + B)(A + C) = AA + AC + AB + BC Distributive law

= A + AC + AB + BC Rule 7: AA = A

= A(1 + C) + AB + BC Factoring (distributive law)

= A * 1 + AB + BC Rule 2: 1 + C = 1

= A(1 + B) + BC Factoring (distributive law)

= A * 1 + BC Rule 2: 1 + B = 1

= A + BC Rule 4: A * 1 = A



Rule 12: (A + B)(A + C) = A + BC



DeMorgan’s Theorems



DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an 

important part of Boolean algebra. In practical terms, DeMorgan’s theorems 

provide mathematical verification of the equivalency of the NAND and negative-

OR gates and the equivalency of the NOR and negative-AND gates.



DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements 

of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the 

complements of the individual variables.

The formula for expressing this theorem for two variables is

XY=  X + Y



DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements 

of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the 

complements of the individual variables.

The formula for expressing this theorem for two variables is

X + Y = X Y



Gate equivalencies and the corresponding truth tables for 

DeMorgan’s theorems



Applying DeMorgan’s Theorems

A + BC + D(E + F)



Logic Simplification Using Boolean Algebra



Logic Simplification Using Boolean Algebra

A logic expression can be reduced to its simplest form or changed to a more 

convenient form to implement the expression most efficiently using Boolean 

algebra.



EXAMPLE

Using Boolean algebra, simplify this expression: AB + A(B + C) + B(B + C)

Step 1: Apply the distributive law to the 2nd and 3rd AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term. AB + AB + AC + B + BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms. AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms. AB + AC + 

B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms. B + AC



EXAMPLE [AB(C + BD) + A B]C





Standard Forms of Boolean Expressions



Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of 

two standard forms: the sum-of-products form or the product-of-sums form. 

Standardization makes the evaluation, simplification, and implementation of 

Boolean expressions much more systematic and easier.



The Sum-of-Products (SOP) Form

A product term was defined as a term consisting of the product (Boolean 

multiplication) of literals (variables or their complements). When two or more 

product terms are summed by Boolean addition, the resulting expression is a sum 

of products (SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC



AND/OR Implementation of an SOP Expression

Implementing an SOP expression simply requires ORing the outputs of two or 

more AND gates. A product term is produced by an AND operation, and the sum 

(addition) of two or more product terms is produced by an OR operation.



NAND/NAND Implementation of an SOP Expression

NAND gates can be used to implement an SOP expression. By using only NAND 

gates, an AND/OR function can be accomplished, as illustrated in Figure



Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra 

techniques.

For example, the expression A(B + CD) can be converted to SOP form by 

applying the distributive law:

A(B + CD) = AB + ACD



The Standard SOP Form

the expression ABC + ABD + ABCD has a domain made up of the variables A, B, 

C, and D. However, notice that the complete set of variables in the domain is not 

represented in the first two terms of the expression; that is, D or D is missing from 

the first term and C or C is missing from the second term.

A standard SOP expression is one in which all the variables in the domain appear 

in each product term in the expression. For example, ABCD + A BCD + ABC D is 

a standard SOP expression. 



Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the 
domain can be expanded to standard form to include all variables in the domain and 
their complements. As stated in the following steps, a nonstandard SOP expression is 
converted into a standard form using Boolean algebra rule 6 (A + A = 1) 

Step 1: Multiply each nonstandard product term by a term made up of the sum of a 
missing variable and its complement. 

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the 
domain in either complimented or uncomplemented form. 



The Product-of-Sums (POS) Form

A sum term was defined as a term consisting of the sum (Boolean addition) of 

literals (variables or their complements).

Some examples are

(A + B)(A + B + C)

(A + B + C)(C + D + E)(B + C + D)

(A + B)(A + B + C)(A + C)



Implementation of a POS Expression

Implementing a POS expression simply requires ANDing the outputs of two or 

more OR gates. A sum term is produced by an OR operation, and the product of 

two or more sum terms is produced by an AND operation.



The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not 

contain all of the variables in the domain of the expression. For example, the 

expression

(A + B + C)(A + B + D)(A + B + C + D)

A standard POS expression is one in which all the variables in the domain appear 

in each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)



Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in the 

domain can be expanded to standard form to include all variables in the domain 

and their complements.

Step 1: Add to each nonstandard product term a term made up of the product of 

the missing variable and its complement. This results in two sum terms. As you 

know, you can add 0 to anything without changing its value.

Step 2: Apply rule 12 : A + BC = (A + B)(A + C)

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the 

domain in either complemented or uncomplemented form



EXAMPLE



The Karnaugh Map



Karnaugh map

A Karnaugh map provides a systematic method for simplifying Boolean 

expressions and, if properly used, will produce the simplest SOP or POS 

expression possible, known as the minimum expression. As you have seen, the 

effectiveness of algebraic simplification depends on your familiarity with all the 

laws, rules, and theorems of Boolean algebra and on your ability to apply them. 

The Karnaugh map, on the other hand, provides a “cookbook” method for 

simplification. Other simplification techniques include the Quine-McCluskey 

method and the Espresso algorithm.



Karnaugh map

A Karnaugh map is similar to a truth table because it presents all of the possible 

values of input variables and the resulting output for each value. Instead of being 

organized into columns and rows like a truth table, the Karnaugh map is an array 

of cells in which each cell represents a binary value of the input variables. The 

cells are arranged in a way so that simplification of a given expression is simply a 

matter of properly grouping the cells.



The number of cells in a Karnaugh map

The number of cells in a Karnaugh map, as well as the number of rows in a truth 

table, is equal to the total number of possible input variable combinations. For 

three variables, the number of cells is 23 = 8. For four variables, the number of 

cells is 24 = 16.



The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells. In this case, A, B, and C 

are used for the variables although other letters could be used. Binary values of A 

and B are along the left side (notice the sequence) and the values of C are across 

the top. The value of a given cell is the binary values of A and B at the left in the 

same row combined with the value of C at the top in the same column. 



The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure (a). 

Binary values of A and B are along the left side and the values of C and D are 

across the top. The value of a given cell is the binary values of A and B at the left 

in the same row combined with the binary values of C and D at the top in the 

same column.



Cell Adjacency

Physically, each cell is adjacent to the cells that are immediately next to it on any 

of its four sides. A cell is not adjacent to the cells that diagonally touch any of its 

corners. Also, the cells in the top row are adjacent to the corresponding cells in 

the bottom row and the cells in the outer left column are adjacent to the 

corresponding cells in the outer right column. This is called “wrap-around” 

adjacency because you can think of the map as wrapping around from top to 

bottom to form a cylinder or from left to right to form a cylinder.

The figure illustrates the cell adjacencies with a 4-variable map, although the 

same rules for adjacency apply to Karnaugh maps with any number of cells.



Karnaugh Map SOP Minimization

As stated in the last section, the Karnaugh map is used for simplifying Boolean 

expressions to their minimum form. A minimized SOP expression contains the 

fewest possible terms with the fewest possible variables per term. Generally, a 

minimum SOP expression can be implemented with fewer logic gates than a 

standard expression. In this section, Karnaugh maps with up to four variables are 

covered.



Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for 

each product term in the expression. Each 1 is placed in a cell corresponding to 

the value of a product term. For example, for the product term ABC, a 1 goes in 

the 101 cell on a 3-variable map When an SOP expression is completely mapped, 

there will be a number of 1s on the Karnaugh map equal to the number of product 

terms in the standard SOP expression. 



Steps 

The following steps and the illustration in Figure show the mapping process.

Step 1: Determine the binary value of each product term in the standard SOP 

expression. 

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the 

cell having the same value as the product term.



Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms 

with the fewest possible variables is called minimization. After an SOP expression 

has been mapped, a minimum SOP expression is obtained by grouping the 1s 

and determining the minimum SOP expression from the map.



Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those 

adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize the 

number of groups.

1. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the case of a 3-

variable map, 23 = 8 cells is the maximum group.

2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the 

group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in a group in accordance with rule 1.

4. Each 1 on the map must be included in at least one group. The 1s already in a group can be 

included in another group as long as the overlapping groups include noncommon 1s



Group the 1s in each of the Karnaugh maps in Figure



Determining the Minimum SOP Expression from the Map

When all the 1s representing the standard product terms in an expression are properly mapped 

and grouped, the process of determining the resulting minimum SOP expression begins. 

The following rules are applied to find the minimum product terms and the minimum SOP 

expression:

1. Group the cells that have 1s. Each group of cells containing 1s creates one product term 

composed of all variables that occur in only one form (either uncomplemented or complemented) 

within the group. Variables that occur both uncomplemented and complemented within the group 

are eliminated. These are called contradictory variables.



Determining the Minimum SOP Expression from the Map

2. Determine the minimum product term for each group.

(a) For a 3-variable map:

(1) A 1-cell group yields a 3-variable product term

(2) A 2-cell group yields a 2-variable product term

(3) A 4-cell group yields a 1-variable term

(4) An 8-cell group yields a value of 1 for the expression



Determining the Minimum SOP Expression from the Map

(b) For a 4-variable map:

(1) A 1-cell group yields a 4-variable product term

(2) A 2-cell group yields a 3-variable product term

(3) A 4-cell group yields a 2-variable product term

(4) An 8-cell group yields a 1-variable term

(5) A 16-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are summed to 
form the minimum SOP expression.



Karnaugh Map POS Minimization

In the last section, you studied the minimization of an SOP expression using a 

Karnaugh map. In this section, we focus on POS expressions. The approaches 

are much the same except that with POS expressions, 0s representing the 

standard sum terms are placed on the Karnaugh map instead of 1s.



steps

For a POS expression in standard form, a 0 is placed on the Karnaugh map for 

each sum term in the expression. Each 0 is placed in a cell corresponding to the 

value of a sum term.

The following steps and the illustration in Figure show the mapping process.

Step 1: Determine the binary value of each sum term in the standard POS 

expression. This is the binary value that makes the term equal to 0.

Step 2: As each sum term is evaluated, place a 0 on the Karnaugh map in the 

corresponding cell.



Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an SOP 

expression except that you group 0s to produce minimum sum terms instead of 

grouping 1s to produce minimum product terms.



EXAMPLE




