
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

To introduce software engineering and to explain
its importance

To set out the answers to key questions about
software engineering

To introduce ethical and professional issues and
to explain why they are of concern to software
engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

FAQs about software engineering

Professional and ethical responsibility

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

The economies of ALL developed nations are
dependent on software

More and more systems are software controlled

Software engineering is concerned with theories,
methods and tools for professional software
development

Software engineering expenditure represents a
significant fraction of GNP in all developed
countries

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 5

Software costs often dominate system costs. The
costs of software on a PC are often greater than
the hardware cost

Software costs more to maintain than it does to
develop. For systems with a long life,
maintenance costs may be several times
development costs

Software engineering is concerned with cost-
effective software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

What is software?

What is software engineering?

What is the difference between software
engineering and computer science?

What is the difference between software
engineering and system engineering?

What is a software process?

What is a software process model?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

What are the costs of software engineering?

What are software engineering methods?

What is CASE (Computer-Aided Software
Engineering)

What are the attributes of good software?

What are the key challenges facing software
engineering?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

What is software?

Computer programs and associated
documentation

Software products may be developed for a
particular customer or may be developed for a
general market

Software products may be
• Generic - developed to be sold to a range of different customers

• Bespoke (custom) - developed for a single customer according
to their specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

What is software engineering?

Software engineering is an engineering discipline
which is concerned with all aspects of software
production

Software engineers should adopt a systematic and
organised approach to their work and use
appropriate tools and techniques depending on the
problem to be solved, the development constraints
and the resources available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

What is the difference between software
engineering and computer science?

Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and
delivering useful software

Computer science theories are currently
insufficient to act as a complete underpinning for
software engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects
of computer-based systems development
including hardware, software and process
engineering. Software engineering is part of this
process

System engineers are involved in system
specification, architectural design, integration and
deployment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

What is a software process?

A set of activities whose goal is the development
or evolution of software

Generic activities in all software processes are:
• Specification - what the system should do and its development

constraints

• Development - production of the software system

• Validation - checking that the software is what the customer
wants

• Evolution - changing the software in response to changing
demands

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

What is a software process model?

A simplified representation of a software process,
presented from a specific perspective

Examples of process perspectives are
• Workflow perspective - sequence of activities

• Data-flow perspective - information flow

• Role/action perspective - who does what

Generic process models
• Waterfall

• Evolutionary development

• Formal transformation

• Integration from reusable components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

What are the costs of software engineering?

Roughly 60% of costs are development costs,
40% are testing costs. For custom software,
evolution costs often exceed development costs

Costs vary depending on the type of system being
developed and the requirements of system
attributes such as performance and system
reliability

Distribution of costs depends on the development
model that is used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

What are software engineering methods?

Structured approaches to software development
which include system models, notations, rules,
design advice and process guidance

Model descriptions
• Descriptions of graphical models which should be produced

Rules
• Constraints applied to system models

Recommendations
• Advice on good design practice

Process guidance
• What activities to follow

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

What is CASE (Computer-Aided
Software Engineering)

Software systems which are intended to provide
automated support for software process activities.
CASE systems are often used for method support

Upper-CASE
• Tools to support the early process activities of requirements and

design

Lower-CASE
• Tools to support later activities such as programming,

debugging and testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

What are the attributes of good software?

The software should deliver the required
functionality and performance to the user and
should be maintainable, dependable and usable

Maintainability
• Software must evolve to meet changing needs

Dependability
• Software must be trustworthy

Efficiency
• Software should not make wasteful use of system resources

Usability
• Software must be usable by the users for which it was designed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

What are the key challenges facing
software engineering?

Coping with legacy systems, coping with
increasing diversity and coping with demands for
reduced delivery times

Legacy systems
• Old, valuable systems must be maintained and updated

Heterogeneity
• Systems are distributed and include a mix of hardware and

software

Delivery
• There is increasing pressure for faster delivery of software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

Professional and ethical responsibility

Software engineering involves wider
responsibilities than simply the application of
technical skills

Software engineers must behave in an honest and
ethically responsible way if they are to be
respected as professionals

Ethical behaviour is more than simply upholding
the law.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

Issues of professional responsibility

Confidentiality
• Engineers should normally respect the confidentiality of their

employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.

Competence
• Engineers should not misrepresent their level of competence.

They should not knowingly accept work which is outwith their
competence.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

Intellectual property rights
• Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They should
be careful to ensure that the intellectual property of employers
and clients is protected.

Computer misuse
• Software engineers should not use their technical skills to

misuse other people’s computers. Computer misuse ranges from
relatively trivial (game playing on an employer’s machine, say)
to extremely serious (dissemination of viruses).

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 22

The professional societies in the US have
cooperated to produce a code of ethical practice.

Members of these organisations sign up to the
code of practice when they join.

The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Preamble
• The short version of the code summarizes aspirations at a high

level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations
change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details
form a cohesive code.

• Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

1. PUBLIC
• Software engineers shall act consistently with the public

interest.

2. CLIENT AND EMPLOYER
• Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with
the public interest.

3. PRODUCT
• Software engineers shall ensure that their products and

related modifications meet the highest professional
standards possible.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

JUDGMENT
• Software engineers shall maintain integrity and

independence in their professional judgment.

5. MANAGEMENT
• Software engineering managers and leaders shall

subscribe to and promote an ethical approach to the
management of software development and maintenance.

6. PROFESSION
• Software engineers shall advance the integrity and

reputation of the profession consistent with the public
interest.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

7. COLLEAGUES
• Software engineers shall be fair to and supportive of their

colleagues.

8. SELF
• Software engineers shall participate in lifelong learning

regarding the practice of their profession and shall
promote an ethical approach to the practice of the
profession.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Disagreement in principle with the policies of
senior management

Your employer acts in an unethical way and
releases a safety-critical system without finishing
the testing of the system

Participation in the development of military
weapons systems or nuclear systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

Software engineering is an engineering discipline which is
concerned with all aspects of software production.

Software products consist of developed programs and
associated documentation. Essential product attributes are
maintainability, dependability, efficiency and usability.

The software process consists of activities which are involved
in developing software products. Basic activities are software
specification, development, validation and evolution.

Methods are organised ways of producing software. They include
suggestions for the process to be followed, the notations to be used,
rules governing the system descriptions which are produced and
design guidelines.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

CASE tools are software systems which are designed to
support routine activities in the software process such as
editing design diagrams, checking diagram consistency and
keeping track of program tests which have been run.

Software engineers have responsibilities to the engineering
profession and society. They should not simply be concerned
with technical issues.

Professional societies publish codes of conduct which set out
the standards of behaviour expected of their members.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1

Systems Engineering

Designing, implementing,
deploying and operating systems
which include hardware, software
and people

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 2

Objectives

To explain why system software is affected by
broader system engineering issues

To introduce the concept of emergent system
properties such as reliability and security

To explain why the systems environment must be
considered in the system design process

To explain system engineering and system
procurement processes

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 3

Topics covered

Emergent system properties

Systems and their environment

System modelling

The system engineering process

System procurement

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 4

What is a system?

A purposeful collection of inter-related components
working together towards some common objective.

A system may include software, mechanical,
electrical and electronic hardware and be operated
by people.

System components are dependent on other
system components

The properties and behaviour of system components
are inextricably inter-mingled

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 5

Problems of systems engineering

Large systems are usually designed to solve
'wicked' problems

Systems engineering requires a great deal of
co-ordination across disciplines
• Almost infinite possibilities for design trade-offs across

components

• Mutual distrust and lack of understanding across engineering
disciplines

Systems must be designed to last many years
in a changing environment

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 6

Software and systems engineering

The proportion of software in systems is increasing.
Software-driven general purpose electronics is
replacing special-purpose systems

Problems of systems engineering are similar to
problems of software engineering

Software is (unfortunately) seen as a problem
in systems engineering. Many large system projects
have been delayed because of software problems

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 7

Emergent properties

Properties of the system as a whole rather than
properties that can be derived from the properties of
components of a system

Emergent properties are a consequence of the
relationships between system components

They can therefore only be assessed and measured
once the components have been integrated into a
system

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 8

Examples of emergent properties

The overall weight of the system

• This is an example of an emergent property that can be computed
from individual component properties.

The reliability of the system

• This depends on the reliability of system components and the
relationships between the components.

The usability of a system
• This is a complex property which is not simply dependent on the

system hardware and software but also depends on the system
operators and the environment where it is used.

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 9

Types of emergent property

Functional properties

• These appear when all the parts of a system work together to
achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been
assembled from its components.

Non-functional emergent properties
• Examples are reliability, performance, safety, and security. These

relate to the behaviour of the system in its operational
environment. They are often critical for computer-based systems
as failure to achieve some minimal defined level in these
properties may make the system unusable.

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 10

Because of component inter-dependencies,
faults can be propagated through the system

System failures often occur because of
unforeseen inter-relationships between
components

It is probably impossible to anticipate all
possible component relationships

Software reliability measures may give a false
picture of the system reliability

System reliability engineering

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 11

Hardware reliability

• What is the probability of a hardware component failing and how
long does it take to repair that component?

Software reliability

• How likely is it that a software component will produce an
incorrect output. Software failure is usually distinct from hardware
failure in that software does not wear out.

Operator reliability

• How likely is it that the operator of a system will make an error?

Influences on reliability

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 12

Reliability relationships

Hardware failure can generate spurious signals that
are outside the range of inputs expected by the
software

Software errors can cause alarms to be activated
which cause operator stress and lead to operator
errors

The environment in which a system is installed can
affect its reliability

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 13

The ‘shall-not’ properties

Properties such as performance and reliability can
be measured

However, some properties are properties that the
system should not exhibit
• Safety - the system should not behave in an unsafe way

• Security - the system should not permit unauthorised use

Measuring or assessing these properties is very hard

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 14

Systems and their environment

Systems are not independent but exist in an
environment

System’s function may be to change its environment

Environment affects the functioning of the system
e.g. system may require electrical supply from its
environment

The organizational as well as the physical
environment may be important

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 15

System hierarchies

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 16

Human and organisational factors

Process changes

• Does the system require changes to the work processes in the
environment?

Job changes

• Does the system de-skill the users in an environment or cause them to
change the way they work?

Organisational changes

• Does the system change the political power structure in an
organisation?

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 17

System architecture modelling

An architectural model presents an abstract view of
the sub-systems making up a system

May include major information flows between sub-
systems

Usually presented as a block diagram

May identify different types of functional
component in the model

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 18

Intruder alarm system

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 19

Component types in alarm system

Sensor
• Movement sensor, door sensor

Actuator
• Siren

Communication
• Telephone caller

Co-ordination
• Alarm controller

Interface
• Voice synthesizer

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31. Slide ##

ATC system
architecture

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 21

Functional system components

Sensor components

Actuator components

Computation components

Communication components

Co-ordination components

Interface components

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 22

System components

Sensor components
• Collect information from the system’s environment e.g. radars in

an air traffic control system

Actuator components
• Cause some change in the system’s environment e.g. valves in a

process control system which increase or decrease material flow in
a pipe

Computation components
• Carry out some computations on an input to produce an output e.g.

a floating point processor in a computer system

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 23

System components

Communication components
• Allow system components to communicate with each other e.g.

network linking distributed computers

Co-ordination components
• Co-ordinate the interactions of other system components e.g.

scheduler in a real-time system

Interface components
• Facilitate the interactions of other system components e.g.

operator interface

All components are now usually software controlled

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 24

Component types in alarm system

Sensor
• Movement sensor, Door sensor

Actuator
• Siren

Communication
• Telephone caller

Coordination
• Alarm controller

Interface
• Voice synthesizer

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 25

The system engineering process

Usually follows a ‘waterfall’ model because of the
need for parallel development of different parts of
the system
• Little scope for iteration between phases because hardware

changes are very expensive. Software may have to compensate for
hardware problems

Inevitably involves engineers from different
disciplines who must work together
• Much scope for misunderstanding here. Different disciplines use a

different vocabulary and much negotiation is required. Engineers
may have personal agendas to fulfil

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 26

The system engineering process

System
integration

Sub-system
development

System
design

Requirements
definition

System
installation

System
evolution

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 27

Inter-disciplinary involvement

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 28

System requirements definition

Three types of requirement defined at this stage
• Abstract functional requirements. System functions are defined in

an abstract way

• System properties. Non-functional requirements for the system in
general are defined

• Undesirable characteristics. Unacceptable system behaviour is
specified

Should also define overall organisational objectives
for the system

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 29

System objectives

Functional objectives
• To provide a fire and intruder alarm system for the building which

will provide internal and external warning of fire or unauthorized
intrusion

Organisational objectives
• To ensure that the normal functioning of work carried out in the

building is not seriously disrupted by events such as fire and
unauthorized intrusion

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 30

System requirements problems

Changing as the system is being specified

Must anticipate hardware/communications
developments over the lifetime of the system

Hard to define non-functional requirements
(particularly) without an impression of
component structure of the system.

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 31

The system design process

Partition requirements
• Organise requirements into related groups

Identify sub-systems
• Identify a set of sub-systems which collectively can meet the

system requirements

Assign requirements to sub-systems
• Causes particular problems when COTS are integrated

Specify sub-system functionality

Define sub-system interfaces
• Critical activity for parallel sub-system development

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 32

The system design process

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 33

System design problems

Requirements partitioning to hardware,
software and human components may involve a lot
of negotiation

Difficult design problems are often assumed to be
readily solved using software

Hardware platforms may be inappropriate for
software requirements so software must compensate
for this

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 34

Sub-system development

Typically parallel projects developing the
hardware, software and communications

May involve some COTS (Commercial Off-the-
Shelf) systems procurement

Lack of communication across implementation
teams

Bureaucratic and slow mechanism for
proposing system changes means that the
development schedule may be extended because of
the need for rework

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 35

The process of putting hardware, software and
people together to make a system

Should be tackled incrementally so that sub-systems
are integrated one at a time

Interface problems between sub-systems are usually
found at this stage

May be problems with uncoordinated deliveries
of system components

System integration

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 36

Environmental assumptions may be incorrect

May be human resistance to the introduction of
a new system

System may have to coexist with alternative
systems for some time

May be physical installation problems (e.g.
cabling problems)

Operator training has to be identified

System installation

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 37

Will bring unforeseen requirements to light

Users may use the system in a way which is
not anticipated by system designers

May reveal problems in the interaction with
other systems
• Physical problems of incompatibility

• Data conversion problems

• Increased operator error rate because of inconsistent interfaces

System operation

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 38

System evolution

Large systems have a long lifetime. They must
evolve to meet changing requirements

Evolution is inherently costly
• Changes must be analysed from a technical and business

perspective

• Sub-systems interact so unanticipated problems can arise

• There is rarely a rationale for original design decisions

• System structure is corrupted as changes are made to it

Existing systems which must be maintained are
sometimes called legacy systems

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 39

System decommissioning

Taking the system out of service after its useful
lifetime

May require removal of materials (e.g. dangerous
chemicals) which pollute the environment
• Should be planned for in the system design by encapsulation

May require data to be restructured and converted to
be used in some other system

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 40

System procurement

Acquiring a system for an organization to meet
some need

Some system specification and architectural design
is usually necessary before procurement
• You need a specification to let a contract for system development

• The specification may allow you to buy a commercial off-the-shelf
(COTS) system. Almost always cheaper than developing a system
from scratch

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 41

The system procurement process

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 42

Procurement issues

Requirements may have to be modified to match the
capabilities of off-the-shelf components

The requirements specification may be part of the
contract for the development of the system

There is usually a contract negotiation period to
agree changes after the contractor to build a system
has been selected

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 43

Contractors and sub-contractors

The procurement of large hardware/software
systems is usually based around some principal
contractor

Sub-contracts are issued to other suppliers to supply
parts of the system

Customer liases with the principal contractor and
does not deal directly with sub-contractors

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 44

Contractor/Sub-contractor model

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 45

Key points

System engineering involves input from a range of
disciplines

Emergent properties are properties that are
characteristic of the system as a whole and not its
component parts

System architectural models show major sub-
systems and inter-connections. They are usually
described using block diagrams

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 46

Key points

System component types are sensor, actuator,
computation, co-ordination, communication and
interface

The systems engineering process is usually a
waterfall model and includes specification, design,
development and integration.

System procurement is concerned with deciding
which system to buy and who to buy it from

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 47

Systems engineering is hard! There will never be an
easy answer to the problems of complex system
development

Software engineers do not have all the answers
but may be better at taking a systems
viewpoint

Disciplines need to recognise each others
strengths and actively rather than reluctantly
cooperate in the systems engineering process

Conclusion

Edited with the trial version of
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

http://www.foxitsoftware.com/shopping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

Coherent sets of activities for
specifying, designing, implementing
and testing software systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

To introduce software process models

To describe a number of different process models
and when they may be used

To describe outline process models for
requirements engineering, software development,
testing and evolution

To introduce CASE technology to support
software process activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

Software process models

Process iteration

Software specification

Software design and implementation

Software validation

Software evolution

Automated process support

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

A structured set of activities required to develop a
software system
• Specification

• Design

• Validation

• Evolution

A software process model is an abstract
representation of a process. It presents a
description of a process from some particular
perspective

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 5

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

The waterfall model
• Separate and distinct phases of specification and development

Evolutionary development
• Specification and development are interleaved

Formal systems development
• A mathematical system model is formally transformed to an

implementation

Reuse-based development
• The system is assembled from existing components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

Requirements analysis and definition

System and software design

Implementation and unit testing

Integration and system testing

Operation and maintenance

The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

Inflexible partitioning of the project into distinct
stages

This makes it difficult to respond to changing
customer requirements

Therefore, this model is only appropriate when
the requirements are well-understood

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

Exploratory development
• Objective is to work with customers and to evolve a final

system from an initial outline specification. Should start with
well-understood requirements

Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Concurrent
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

Problems
• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be
required

Applicability
• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

Based on the transformation of a mathematical
specification through different representations to
an executable program

Transformations are ‘correctness-preserving’ so it
is straightforward to show that the program
conforms to its specification

Embodied in the ‘Cleanroom’ approach to
software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

R2
Formal

specification
R3

Executable
program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

Problems
• Need for specialised skills and training to apply the technique

• Difficult to formally specify some aspects of the system such as
the user interface

Applicability
• Critical systems especially those where a safety or security case

must be made before the system is put into operation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems

Process stages
• Component analysis

• Requirements modification

• System design with reuse

• Development and integration

This approach is becoming more important but
still limited experience with it

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of the
process for large systems

Iteration can be applied to any of the generic
process models

Two (related) approaches
• Incremental development

• Spiral development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

Rather than deliver the system as a single
delivery, the development and delivery is broken
down into increments with each increment
delivering part of the required functionality

User requirements are prioritised and the highest
priority requirements are included in early
increments

Once the development of an increment is started,
the requirements are frozen though requirements
for later increments can continue to evolve

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 22

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Customer value can be delivered with each
increment so system functionality is available
earlier

Early increments act as a prototype to help elicit
requirements for later increments

Lower risk of overall project failure

The highest priority system services tend to
receive the most testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

New approach to development based on the
development and delivery of very small
increments of functionality

Relies on constant code improvement, user
involvement in the development team and
pairwise programming

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

Process is represented as a spiral rather than as a
sequence of activities with backtracking

Each loop in the spiral represents a phase in the
process.

No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
is required

Risks are explicitly assessed and resolved
throughout the process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Objective setting
• Specific objectives for the phase are identified

Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key

risks

Development and validation
• A development model for the system is chosen which can be

any of the generic models

Planning
• The project is reviewed and the next phase of the spiral is

planned

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

The process of establishing what services are
required and the constraints on the system’s
operation and development

Requirements engineering process
• Feasibility study

• Requirements elicitation and analysis

• Requirements specification

• Requirements validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 30

The process of converting the system
specification into an executable system

Software design
• Design a software structure that realises the specification

Implementation
• Translate this structure into an executable program

The activities of design and implementation are
closely related and may be inter-leaved

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 31

Architectural design

Abstract specification

Interface design

Component design

Data structure design

Algorithm design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 32

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 33

Systematic approaches to developing a software
design

The design is usually documented as a set of
graphical models

Possible models
• Data-flow model

• Entity-relation-attribute model

• Structural model

• Object models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 34

Translating a design into a program and removing
errors from that program

Programming is a personal activity - there is no
generic programming process

Programmers carry out some program testing to
discover faults in the program and remove these
faults in the debugging process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 35

Locate
error

Design
error repair

Repair
error

Re-test
program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 36

Verification and validation is intended to show
that a system conforms to its specification and
meets the requirements of the system customer

Involves checking and review processes and
system testing

System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed by
the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 37

Sub-system
testing

Module
testing

Unit
testing

System
testing

Acceptance
testing

Component
testing

Integration testing User
testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 38

Unit testing
• Individual components are tested

Module testing
• Related collections of dependent components are tested

Sub-system testing
• Modules are integrated into sub-systems and tested. The focus

here should be on interface testing

System testing
• Testing of the system as a whole. Testing of emergent properties

Acceptance testing
• Testing with customer data to check that it is acceptable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 39

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 40

Software is inherently flexible and can change.

As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change

Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer
systems are completely new

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 41

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 42

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 43

Computer-aided software engineering (CASE) is
software to support software development and
evolution processes

Activity automation
• Graphical editors for system model development

• Data dictionary to manage design entities

• Graphical UI builder for user interface construction

• Debuggers to support program fault finding

• Automated translators to generate new versions of a program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 44

Case technology has led to significant
improvements in the software process though not
the order of magnitude improvements that were
once predicted
• Software engineering requires creative thought - this is not

readily automatable

• Software engineering is a team activity and, for large projects,
much time is spent in team interactions. CASE technology does
not really support these

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 45

Classification helps us understand the different
types of CASE tools and their support for process
activities

Functional perspective
• Tools are classified according to their specific function

Process perspective
• Tools are classified according to process activities that are

supported

Integration perspective
• Tools are classified according to their organisation into

integrated units

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 46

Tool type Examples
Planning tools PERT tools, estimation tools,

spreadsheets
Editing tools Text editors, diagram editors, word

processors
Change management tools Requirements traceability tools, change

control systems
Configuration management tools Version management systems, system

building tools
Prototyping tools Very high-level languages,

user interface generators
Method-support tools Design editors, data dictionaries, code

generators
Language-processing tools Compilers, interpreters
Program analysis tools Cross reference generators, static

analysers, dynamic analysers
Testing tools Test data generators, file comparators
Debugging tools Interactive debugging systems
Documentation tools Page layout programs, image editors
Re-engineering tools Cross-reference systems, program re-

structuring systems

Activity-based classification

Reengineering tools

Testing tools

Debugging tools

Program analysis tools

Language-processing
tools

Method support tools

Prototyping tools

Configuration
management tools

Change management tools

Documentation tools

Editing tools

Planning tools

Specification Design Implementation Verification
and

Validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 48

Tools
• Support individual process tasks such as design consistency

checking, text editing, etc.

Workbenches
• Support a process phase such as specification or design,

Normally include a number of integrated tools

Environments
• Support all or a substantial part of an entire software process.

Normally include several integrated workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 49

Single-method
workbenches

General-purpose
workbenches

Multi-method
workbenches

Language-specific
workbenches

Programming Testing
Analysis and

design

Integrated
environments

Process-centred
environments

File
comparators

CompilersEditors

EnvironmentsWorkbenchesTools

CASE
technology

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 50

Software processes are the activities involved in
producing and evolving a software system. They
are represented in a software process model

General activities are specification, design and
implementation, validation and evolution

Generic process models describe the organisation
of software processes

Iterative process models describe the software
process as a cycle of activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 51

Requirements engineering is the process of
developing a software specification

Design and implementation processes transform
the specification to an executable program

Validation involves checking that the system
meets to its specification and user needs

Evolution is concerned with modifying the
system after it is in use

CASE technology supports software process
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 2

To introduce software project management and to
describe its distinctive characteristics

To discuss project planning and the planning
process

To show how graphical schedule representations
are used by project management

To discuss the notion of risks and the risk
management process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 3

Management activities

Project planning

Project scheduling

Risk management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 4

Concerned with activities involved in ensuring
that software is delivered on time and on
schedule and in accordance with the
requirements of the organisations developing
and procuring the software

Project management is needed because software
development is always subject to budget and
schedule constraints that are set by the
organisation developing the software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 5

The product is intangible

The product is uniquely flexible

Software engineering is not recognized as an
engineering discipline with the sane status as
mechanical, electrical engineering, etc.

The software development process is not
standardised

Many software projects are 'one-off' projects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 6

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 7

Proposal writing

Project planning and scheduling

Project costing

Project monitoring and reviews

Personnel selection and evaluation

Report writing and presentations

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 8

These activities are not peculiar to software
management

Many techniques of engineering project
management are equally applicable to software
project management

Technically complex engineering systems tend
to suffer from the same problems as software
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 9

May not be possible to appoint the ideal people to
work on a project
• Project budget may not allow for the use of highly-paid staff

• Staff with the appropriate experience may not be available

• An organisation may wish to develop employee skills on a
software project

Managers have to work within these constraints
especially when (as is currently the case) there is
an international shortage of skilled IT staff

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 10

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 11

Probably the most time-consuming project
management activity

Continuous activity from initial concept through
to system delivery. Plans must be regularly
revised as new information becomes available

Various different types of plan may be developed
to support the main software project plan that is
concerned with schedule and budget

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 12

Plan Description
Quality plan Describes the quality procedures and

standards that will be used in a project.
Validation plan Describes the approach, resources and

schedule used for system validation.
Configuration
management plan

Describes the configuration management
procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of
the system, maintenance costs and effort
required.

Staff development plan. Describes how the skills and experience of
the project team members will be
developed.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 13

Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
if (problems arise) then

Initiate technical review and possible revision
end if

end loop

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 14

Introduction

Project organisation

Risk analysis

Hardware and software resource requirements

Work breakdown

Project schedule

Monitoring and reporting mechanisms

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 15

Activities in a project should be organised to
produce tangible outputs for management to
judge progress

Milestones are the end-point of a process activity

Deliverables are project results delivered to
customers

The waterfall process allows for the
straightforward definition of progress milestones

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 16

Evaluation
report

Prototype
development

Requirements
definition

Requirements
analysis

Feasibility
report

Feasibility
study

Architectural
design

Design
study

Requirements
specification

Requirements
specification

ACTIVITIES

MILESTONES

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 17

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 18

Split project into tasks and estimate time and
resources required to complete each task

Organize tasks concurrently to make optimal
use of workforce

Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete

Dependent on project managers intuition and
experience

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 19

Estimate resources
for activities

Identify activity
dependencies

Identify
activities

Allocate people
to activities

Create project
charts

Software
requirements

Activity charts
and bar charts

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 20

Estimating the difficulty of problems and hence
the cost of developing a solution is hard

Productivity is not proportional to the number of
people working on a task

Adding people to a late project makes it later
because of communication overheads

The unexpected always happens. Always allow
contingency in planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 21

Graphical notations used to illustrate the project
schedule

Show project breakdown into tasks. Tasks should
not be too small. They should take about a week
or two

Activity charts show task dependencies and the
the critical path

Bar charts show schedule against calendar time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 22

Task Duration (days) Dependencies
T1 8
T2 15
T3 15 T1 (M1)
T4 10
T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 23

start

T2

M3
T6

Finish

T10

M7
T5

T7

M2
T4

M5

T8

4/7/99

8 days

14/7/99 15 days

4/8/99

15 days

25/8/99

7 days

5/9/99

10 days

19/9/99

15 days

11/8/99

25 days

10 days

20 days

5 days
25/7/99

15 days

25/7/99

18/7/99

10 days

T1

M1 T3
T9

M6

T11

M8

T12

M4

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 24

Finish

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 25

4/7 11/7 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 26

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 27

Risk management is concerned with identifying
risks and drawing up plans to minimise their
effect on a project.

A risk is a probability that some adverse
circumstance will occur.
• Project risks affect schedule or resources

• Product risks affect the quality or performance of the software
being developed

• Business risks affect the organisation developing or procuring
the software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 28

Risk Risk type Description
Staff turnover Project Experienced staff will leave the

project before it is finished.
Management change Project There will be a change of

organisational management with
different priorities.

Hardware unavailability Project Hardware which is essential for the
project will not be delivered on
schedule.

Requirements change Project and
product

There will be a larger number of
changes to the requirements than
anticipated.

Specification delays Project and
product

Specifications of essential interfaces
are not available on schedule

Size underestimate Project and
product

The size of the system has been
underestimated.

CASE tool under-
performance

Product CASE tools which support the
project do not perform as anticipated

Technology change Business The underlying technology on which
the system is built is superseded by
new technology.

Product competition Business A competitive product is marketed
before the system is completed.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 29

Risk identification
• Identify project, product and business risks

Risk analysis
• Assess the likelihood and consequences of these risks

Risk planning
• Draw up plans to avoid or minimise the effects of the risk

Risk monitoring
• Monitor the risks throughout the project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 30

Risk avoidance
and contingency

plans

Risk planning

Prioritised risk
list

Risk analysis

List of potential
risks

Risk
identification

Risk
assessment

Risk
monitoring

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 31

Technology risks

People risks

Organisational risks

Requirements risks

Estimation risks

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 32

Risk type Possible risks
Technology The database used in the system cannot process as many

transactions per second as expected.
Software components which should be reused contain defects
which limit their functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different management
are responsible for the project.
Organisational financial problems force reductions in the project
budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements which require major design rework are
proposed.
Customers fail to understand the impact of requirements
changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 33

Assess probability and seriousness of each risk

Probability may be very low, low, moderate, high
or very high

Risk effects might be catastrophic, serious,
tolerable or insignificant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 34

Risk Probability Effects
Organisational financial problems force reductions
in the project budget.

Low Catastrophic

It is impossible to recruit staff with the skills
required for the project.

High Catastrophic

Key staff are ill at critical times in the project. Moderate Serious
Software components which should be reused
contain defects which limit their functionality.

Moderate Serious

Changes to requirements which require major
design rework are proposed.

Moderate Serious

The organisation is restructured so that different
management are responsible for the project.

High Serious

The database used in the system cannot process as
many transactions per second as expected.

Moderate Serious

The time required to develop the software is
underestimated.

High Serious

CASE tools cannot be integrated. High Tolerable
Customers fail to understand the impact of
requirements changes.

Moderate Tolerable

Required training for staff is not available. Moderate Tolerable
The rate of defect repair is underestimated. Moderate Tolerable
The size of the software is underestimated. High Tolerable
The code generated by CASE tools is inefficient. Moderate Insignificant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 35

Consider each risk and develop a strategy to
manage that risk

Avoidance strategies
• The probability that the risk will arise is reduced

Minimisation strategies
• The impact of the risk on the project or product will be reduced

Contingency plans
• If the risk arises, contingency plans are plans to deal with that

risk

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 36

Risk Strategy
Organisational
financial problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Recruitment
problems

Alert customer of potential difficulties and the possibility of
delays, investigate buying-in components.

Staff illness Reorganise team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective
components

Replace potentially defective components with bought-in
components of known reliability.

Requirements
changes

Derive traceability information to assess requirements change
impact, maximise information hiding in the design.

Organisational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database
performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying in components, investigate use of a program
generator.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 37

Assess each identified risks regularly to decide
whether or not it is becoming less or more
probable

Also assess whether the effects of the risk have
changed

Each key risk should be discussed at management
progress meetings

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 38

Risk type Potential indicators
Technology Late delivery of hardware or support software, many

reported technology problems
People Poor staff morale, poor relationships amongst team

member, job availability
Organisational organisational gossip, lack of action by senior

management
Tools reluctance by team members to use tools, complaints

about CASE tools, demands for higher-powered
workstations

Requirements many requirements change requests, customer
complaints

Estimation failure to meet agreed schedule, failure to clear
reported defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 39

Good project management is essential for project
success

The intangible nature of software causes
problems for management

Managers have diverse roles but their most
significant activities are planning, estimating and
scheduling

Planning and estimating are iterative processes
which continue throughout the course of a
project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 40

A project milestone is a predictable state where
some formal report of progress is presented to
management.

Risks may be project risks, product risks or
business risks

Risk management is concerned with identifying
risks which may affect the project and planning to
ensure that these risks do not develop into major
threats

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 2

To introduce the concepts of user and system
requirements

To describe functional and non-functional
requirements

To explain two techniques for describing system
requirements

To explain how software requirements may be
organised in a requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 3

Functional and non-functional requirements

User requirements

System requirements

The software requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 4

The process of establishing the services that the
customer requires from a system and the constraints
under which it operates and is developed

The requirements themselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 5

It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification

This is inevitable as requirements may serve a dual
function
• May be the basis for a bid for a contract - therefore must be open to

interpretation

• May be the basis for the contract itself - therefore must be defined in
detail

• Both these statements may be called requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 6

“If a company wishes to let a contract for a large software development project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the contract,
offering, perhaps, different ways of meeting the client organisation’s needs. Once a
contract has been awarded, the contractor must write a system definition for the client
in more detail so that the client understands and can validate what the software will
do. Both of these documents may be called the requirements document for the
system.”

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 7

User requirements
• Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for customers

System requirements
• A structured document setting out detailed descriptions of the system

services. Written as a contract between client and contractor

Software specification
• A detailed software description which can serve as a basis for a design

or implementation. Written for developers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 8

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 9

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 10

Functional and non-functional requirements

Functional requirements
• Statements of services the system should provide, how the system

should react to particular inputs and how the system should behave in
particular situations.

Non-functional requirements
• constraints on the services or functions offered by the system such as

timing constraints, constraints on the development process, standards,
etc.

Domain requirements
• Requirements that come from the application domain of the system

and that reflect characteristics of that domain

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 11

Describe functionality or system services

Depend on the type of software, expected users and
the type of system where the software is used

Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe the
system services in detail

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 12

The user shall be able to search either all of the initial
set of databases or select a subset from it.

The system shall provide appropriate viewers for the
user to read documents in the document store.

Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to
the account’s permanent storage area.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 13

Problems arise when requirements are not precisely
stated

Ambiguous requirements may be interpreted in
different ways by developers and users

Consider the term ‘appropriate viewers’
• User intention - special purpose viewer for each different document

type

• Developer interpretation - Provide a text viewer that shows the
contents of the document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 14

Requirements completeness and consistency

In principle requirements should be both complete and
consistent

Complete
• They should include descriptions of all facilities required

Consistent
• There should be no conflicts or contradictions in the descriptions of

the system facilities

In practice, it is impossible to produce a complete and
consistent requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 15

Define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

Process requirements may also be specified mandating
a particular CASE system, programming language or
development method

Non-functional requirements may be more critical
than functional requirements. If these are not met, the
system is useless

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 16

Product requirements
• Requirements which specify that the delivered product must behave in

a particular way e.g. execution speed, reliability, etc.

Organisational requirements
• Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements,
etc.

External requirements
• Requirements which arise from factors which are external to the

system and its development process e.g. interoperability requirements,
legislative requirements, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 17

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 18

Product requirement
• 4.C.8 It shall be possible for all necessary communication between the APSE

and the user to be expressed in the standard Ada character set

Organisational requirement
• 9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-STAN-95

External requirement
• 7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the operators of the
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 19

Non-functional requirements may be very difficult to
state precisely and imprecise requirements may be
difficult to verify.

Goal
• A general intention of the user such as ease of use

Verifiable non-functional requirement
• A statement using some measure that can be objectively tested

Goals are helpful to developers as they convey the
intentions of the system users

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 20

A system goal
• The system should be easy to use by experienced controllers and

should be organised in such a way that user errors are minimised.

A verifiable non-functional requirement
• Experienced controllers shall be able to use all the system functions

after a total of two hours training. After this training, the average
number of errors made by experienced users shall not exceed two per
day.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 21

Property Measure
Speed Processed transactions/second

User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 22

Conflicts between different non-functional
requirements are common in complex systems

Spacecraft system
• To minimise weight, the number of separate chips in the system

should be minimised

• To minimise power consumption, lower power chips should be used

• However, using low power chips may mean that more chips have to be
used. Which is the most critical requirement?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 23

Derived from the application domain and describe
system characterisics and features that reflect the
domain

May be new functional requirements, constraints on
existing requirements or define specific computations

If domain requirements are not satisfied, the system
may be unworkable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 24

There shall be a standard user interface to all
databases which shall be based on the Z39.50
standard.

Because of copyright restrictions, some documents
must be deleted immediately on arrival. Depending on
the user’s requirements, these documents will either
be printed locally on the system server for manually
forwarding to the user or routed to a network printer.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 25

The deceleration of the train shall be computed as:

• Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of 9.81ms2 /alpha
are known for different types of train.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 26

Understandability
• Requirements are expressed in the language of the application domain

• This is often not understood by software engineers developing the
system

Implicitness
• Domain specialists understand the area so well that they do not think

of making the domain requirements explicit

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 27

Should describe functional and non-functional
requirements so that they are understandable by
system users who don’t have detailed technical
knowledge

User requirements are defined using natural language,
tables and diagrams

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 28

Lack of clarity
• Precision is difficult without making the document difficult to read

Requirements confusion
• Functional and non-functional requirements tend to be mixed-up

Requirements amalgamation
• Several different requirements may be expressed together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 29

4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 30

2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may be
 turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid
 lines shown will be reduced to avoid filling the smaller diagram
with grid lines.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 31

Database requirements includes both conceptual and
detailed information
• Describes the concept of configuration control facilities

• Includes the detail that objects may be accessed using an incomplete
name

Grid requirement mixes three different kinds of
requirement
• Conceptual functional requirement (the need for a grid)

• Non-functional requirement (grid units)

• Non-functional UI requirement (grid switching)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 32

2.6 Grid facilities
2.6.1 The editor shall provide a grid facility where a

matrix of horizontal and vertical lines provide a
background to the editor window. This grid shall be
a p assive grid where the alignment of entities is the
user's responsibility.
Rationale: A grid helps the user to create a tidy
diagram with well-spaced entities. Although an active
grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person
to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 33

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a f acility for users to add nodes of a specified type to their

design.

3.5.1.2 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.

2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.

3. The user should then drag the node symbol to its final position.

Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 34

Invent a standard format and use it for all
requirements

Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements

Use text highlighting to identify key parts of the
requirement

Avoid the use of computer jargon

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 35

More detailed specifications of user requirements

Serve as a basis for designing the system

May be used as part of the system contract

System requirements may be expressed using system
models discussed in Chapter 7

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 36

In principle, requirements should state what the
system should do and the design should describe how
it does this

In practice, requirements and design are inseparable
• A system architecture may be designed to structure the requirements

• The system may inter-operate with other systems that generate design
requirements

• The use of a specific design may be a domain requirement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 37

Ambiguity
• The readers and writers of the requirement must interpret the same

words in the same way. NL is naturally ambiguous so this is very
difficult

Over-flexibility
• The same thing may be said in a number of different ways in the

specification

Lack of modularisation
• NL structures are inadequate to structure system requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 38

Notation Description
Structured
natural
language

This approach depends on defining standard forms or
templates to express the requirements specification.

Design
description
languages

This approach uses a language like a programming language
but with more abstract features to specify the requirements
by defining an operational model of the system.

Graphical
notations

A graphical language, supplemented by text annotations is
used to define the functional requirements for the system.
An early example of such a graphical language was SADT
(Ross, 1977; Schoman and Ross, 1977). More recently, use-
case descriptions (Jacobsen, Christerson et al., 1993) have
been used. I discuss these in the following chapter.

Mathematical
specifications

These are notations based on mathematical concepts such
as finite-state machines or sets. These unambiguous
specifications reduce the arguments between customer and
contractor about system functionality. However, most
customers don’t understand formal specifications and are
reluctant to accept it as a system contract. I discuss formal
specification in Chapter 9.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 39

A limited form of natural language may be used to
express requirements

This removes some of the problems resulting from
ambiguity and flexibility and imposes a degree of
uniformity on a specification

Often bast supported using a forms-based approach

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 40

Definition of the function or entity

Description of inputs and where they come from

Description of outputs and where they go to

Indication of other entities required

Pre and post conditions (if appropriate)

The side effects (if any)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 41

ECLIPSE/Workstation/Tools/DE/FS/3.5.1

Function Add node

Description Adds a node to an existing design. The user selects the type of node, and its position.
When added to the design, the node becomes the current selection. The user chooses the node position by
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.

Source Node type and Node position are input by the user, Design identifier from the database.

Outputs Design identifier.

Destination The design database. The design is committed to the database on completion of the
operation.

Requires Design graph rooted at input design identifier.

Pre-condition The design is open and displayed on the user's screen.

Post-condition The design is unchanged apart from the addition of a node of the specified type
at the given position.

Side-effects None

Definition: ECLIPSE/Workstation/Tools/DE/RD/3.5.1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 42

Requirements may be defined operationally using a
language like a programming language but with more
flexibility of expression

Most appropriate in two situations
• Where an operation is specified as a sequence of actions and the order

is important

• When hardware and software interfaces have to be specified

Disadvantages are
• The PDL may not be sufficiently expressive to define domain

concepts

• The specification will be taken as a design rather than a specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 43

class ATM {
// declarations here
public static void main (String args[]) throws InvalidCard {

try {
thisCard.read () ; // may throw InvalidCard exception
pin = KeyPad.readPin () ; attempts = 1 ;
while (!thisCard.pin.equals (pin) & attempts < 4)

{ pin = KeyPad.readPin () ; attempts = attempts + 1 ;
}
if (!thisCard.pin.equals (pin))

throw new InvalidCard ("Bad PIN");
thisBalance = thisCard.getBalance () ;
do { Screen.prompt (" Please select a service ") ;

service = Screen.touchKey () ;
switch (service) {

case Services.withdrawalWithReceipt:
receiptRequired = true ;

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 44

PDL may not be sufficiently expressive to express the
system functionality in an understandable way

Notation is only understandable to people with
programming language knowledge

The requirement may be taken as a design
specification rather than a model to help understand
the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 45

Most systems must operate with other systems and the
operating interfaces must be specified as part of the
requirements

Three types of interface may have to be defined
• Procedural interfaces

• Data structures that are exchanged

• Data representations

Formal notations are an effective technique for
interface specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 46

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 47

The requirements document is the official statement
of what is required of the system developers

Should include both a definition and a specification of
requirements

It is NOT a design document. As far as possible, it
should set of WHAT the system should do rather than
HOW it should do it

Users of a
requirements
document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 49

Specify external system behaviour

Specify implementation constraints

Easy to change

Serve as reference tool for maintenance

Record forethought about the life cycle of the system
i.e. predict changes

Characterise responses to unexpected events

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 50

Introduction

General description

Specific requirements

Appendices

Index

This is a generic structure that must be instantiated for
specific systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 51

Introduction

Glossary

User requirements definition

System architecture

System requirements specification

System models

System evolution

Appendices

Index

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 52

Requirements set out what the system should do and
define constraints on its operation and implementation

Functional requirements set out services the system
should provide

Non-functional requirements constrain the system
being developed or the development process

User requirements are high-level statements of what
the system should do

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 53

User requirements should be written in natural
language, tables and diagrams

System requirements are intended to communicate the
functions that the system should provide

System requirements may be written in structured
natural language, a PDL or in a formal language

A software requirements document is an agreed
statement of the system requirements

	SEch1
	SEch2
	SEch3
	SEch4
	SEch5

