Chapter One

Polar Coordinates

Pir, &)

Origin (pole)

0

> X
Initial ray

To define polar coordi nates for the plane,

we start with an origin, called the pole, and an initial ray.

P(r, 8)

Directed distance Directed an
from O to P initial ray t

As in trigonometry, @ is positive when measured
counterclockwise and negative when measured clockwise.

EXAMPLE 1:Find all the polar coordinates of the point P (2, n/6).

0 =m/6
T /6

> P(z.?—“’) - P(—z.E)
/ Initial ray 6 6

#=10 .
\_ _,/ Polar coordinates can

1 have negative r-values.
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The point P(2, 7 /6)
has infinitely many polar coordinate pairs

Polar Equations and Graphs

The polar equation for a circle is r = a.

Lad

T



Relating Polar and Cartesian Coordinates
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Equations Relating Polar and Cartesian Coordinates

X = rcos#, ¥y = rsin#, rr =x* + y% tan9=%

EXAMPLE 2:

Cartesian equivalent

Polar equation
rcosf = 2 x =2
rcosfsinf = 4 xy = 4
x?—yr=1

r’cos’@ — r’sin’f = 1
r=1+ 2rcos# V-3 -4 -1=0
r=1—rcos# YR A+ 209 -y =0




EXAMPLE 3: Find a polar equation for the circle x> + (y — 3)* = 9

X+ (y—3PF=9

*+y —6y+9=9 Expand (y — 3)%.
X+y—6y=0 Cancelation
r’ — 6rsinf =0 2+y =rL y=rsind
r=0 or r—6sinf =10
r = 6sin# Includes both possibilities
}l
+ I1+{}._3}2=g
or
r=~6sn#
(0,3
> X
0

EXAMPLE 4: Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) rcosf = —4
(b) r2 = 4drcos#

4
2cosf — sinf

(c) r=



Solution We use the substitutions rcos # = x, rsinf = y,and r* = 1% + y~.
(a) rcosf = —4

The Cartesian equation: rcosf = —4
x=—4 Substitute.
The graph:  Vertical line through x = —4 on the x-axis
(b) r* = 4rcos

The Cartesian equation: r’ = 4rcos @
x4y =dx Substitute.
X—&x+y=0
X—dx+4+y=4 Complete the square.
x — 2P + _1;:'2 = 4 Factor.

The graph: Circle, radius 2, center (h, k) = (2, 0)

4
2cosd — sind

(c) r=

The Cartesian equation: ri2cosf — sinfl) = 4
2rcost —rsinf = 4 Multiply by r.
x—y=4 Substitute.
y=2x — 4 Solve for y.
The graph: Line, slope m = 2, y-intercept b = —4



Graphing Polar Coordinate Equations

Symmetry

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane
1. Symmetry about the x-axis: If the point (r, 8) lies on the graph, then the point
(r,—8) or (—r, 7 — 6) lies on the graph

(]

. Symmetry about the y-axis: If the point (r, 8) lies on the graph, then the point
(r, @ — @) or (—r, —8) lies on the graph

3. Symmetry about the origin: If the point (r, #) lies on the graph, then the point
(—r,8) or (r, # + ) lies on the graph

¥ .

+ (r.@ — @) 1
gir. 8) or(—r, —f) ir, #)
| N I
I
| » X

0 I » X
: : ‘
b(r, —0)

or(—r,w— @)

(a) About the x-axis
(b) About the y-axis

.

o (r. )

.
(—r.@or(r,? + )

(c) About the origin



EXAMPLE 5:  Graph the curve r = 1 — cos # in the Cartesian xy-plane.

Solution  The curve is symmetric about the x-axis because

(r, #) on the graph = r = 1 — cos #

=r=1—cos(—#) cos # = cos (—8)

=> (r, —#) on the graph.

[} r=1—cos@
0 0

s 1

3 2

T

3 1

2a 3

3 2

T 2

EXAMPLE 6:  Graph the curve r> = 4 cos # in the Cartesian xy-plane.

Solution The equation r* = 4 cos # requires cos f = 0, so we get the entire graph by
running # from —7 /2 to 7 /2. The curve is symmetric about the x-axis because

(r. ) on the graph = r* = 4 cos §
= r* = 4 cos (—6) cos B = cos (—8)
= (r. —0) on the graph.
The curve is also symmetric about the origin because

(r, @) on the graph = r?> = 4 cos 0
= (—r? =4cos
=> (—r, 8) on the graph.

Together, these two symmetries imply symmetry about the y-axis.
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The curve passes through the origin when # = —7 /2 and # = 7 /2. It has a vertical
tangent both times because tan # is infinite.
For each value of 8 in the interval between —7 /2 and 7 /2, the formula r* = 4 cos 0
gives two values of r:

r= +2%cos#.

We make a short table of values, plot the comesponding points, and use information about sym-
metry and tangents to guide us in connecting the points with a smooth curve (Figure 11.30).

@ |cosB |r= £2Vcosh
0 I +2
t3 “Tg ~+19
J_r% é ~+17
3 é— ~+14
J_r% 0 0

*

(a)

/&Hk
L .. -\.;/

ri=4cos@

Py

Loop forr = 12 cosf, Loop for r = 2\/cos 6,

Areas in Polar Coordinates
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dA = Lr2dp
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Area of the Fan-Shaped Region Between the Origin and the Curve
r=f(@)whenae =0 = g.r=0,and f - & = 27.

#
A =_/; ir-dﬂ

This is the integral of the area differential

dA = 112 dg =

5 (f(@))de.

b3 | —

EXAMPLE 7:

r = 2(1 + cos 8).

Solution We graph the cardioid and determine that the radius OP sweeps

out the region exactly once as # runs from 0 to 277. The area is therefore

=21 2w
1 1
248 :/ =+4(1 + cos 8)* do

=0

2
=/ 2(1 + 2 cos 8 + cos’ @) db
0

29
=/ (2 + 4cos f + Z-y)dﬂ
0

2
=/ (3 + 4cosb + cos20)do
0

= {39+45in9+

Find the area of the region in the xy-plane enclosed by the cardioid



Areaofthe Region 0 = @) = r=rf).a =0 = B.and B - a = 2.

?1 #1 “1
A=/ﬂ Erfdﬁ—fu Erﬁdﬂ=/& 5 (rn? = n?)do

/ ry

0
EXAMPLE g:  Find the area of the region that lies inside the circle » = 1 and outside

the cardioid r = 1 — cos 6.

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion . The outer curve is r, = 1, the inner curve is r;, = 1 — cos 6, and 6
runs from —7 /2 to 7 /2. The area is

w2
1 |
A=f Ehf—ﬂﬁm Eq. (1)

—m 2
T'".-"I?-l
= 2/ = (r;z — rﬁ] do Symmetry
0 2
w2
=f (1 — (1 —2cos® + cos’#)) db rn=1landr,=1— cos#
0

w2 -y
=f (2 cos 8 — cos’6) df =f (Emsﬂ—%)dﬂ
v 0

. w2
_ . . B  sin26
= [2 sin & 3 1 ]

=2-I
. 4
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ry=1—cos#

¥  Upper limit

Y 0=m/2

=1

11

™ Lower limit
f=—m/2



Chapter Two

Vectors

Some of the things we measure are determined simply by their
magnitudes. To record mass, length, or time, for example, we need
only write down a number and name an appropriate unit of measure.
We need more information to describe a force, displacement, or
velocity. To describe a force, we need to record the direction in
which it acts as well as how large it is. To describe a body’s
displacement, we have to say in what direction it moved as well as
how far. To describe abody’s velocity, we have to know its direction
of motion, as well as how fast it is going. In this section we show
how to represent things that have both magnitude and direction in
the plane or in space.

DEFINITIONS  The vector represented by the directed line segment AB has

initial point A and terminal point B and its length is denoted by |AB| Two
vectors are equal if they have the same length and direction.

[ B
_ﬁfﬁ
Terminal A / D
['.HIrlEl c
/ P
5 > X
fﬂ F
E
The directed line segment The four arrows in the

plane (directed line segments) shown here

AB 1s called a vector.

have the same length and direction. They
therefore represent the same vector, and
we write AB = CD = OP = EF.
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- Qx,. ¥5. Z5)

(v, vy, v3)

- | Position vector

A vector .@ in standard

position has its initial point at the origin.
The directed line segments Fé and v are
parallel and have the same length.

DEFINITION If v 1s a two-dimensional vector in the plane equal to the vector
with initial point at the origin and terminal point (v, v;), then the component

form of v 1s
vV = {Uje Uz}.

If v is a three-dimensional vector equal to the vector with initial point at the
origin and terminal point (v, vy, v3), then the component form of v is

Y = {'L"[..L"g.. U3}.

The magnitude or length of the vector v = }TQ 1s the nonnegative number

|"ir'| — -\..f':“.'_.:'Jz + “.'_.:'22 + *,l_,;lj_2 = -"k-’.:{Iz —_ IJ)Z + (}r‘? — }rl)z + (EE _ 31}2

(see Figure 12.10).

13




EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial
point P(—3, 4, 1) and terminal point (-5, 2, 2).

Solution
(a) The standard position vector v representing .‘Tﬁ' has components
vy =X —x =-—5—(-3)=-2, w=p-—yn=2—4= -2,
and
vw=n—=2—-—1=1L
The component form of .‘TQ 18
v=(-2-21).

(b) The length or magnitude of v = fo 1s

e=l
I

b

l

v = VE2E + 2P+ (1P =V

14



Vector Algebra Operations

DEFINITIONS Letu = {u,.t,, u;) and v = (v, v,, vy) be vectors with k a
scalar.

Addition: u+v={u + v, + vtz + v3)

Scalar multiplication: ku = (kuy, kus, kus )

EXAMPLE 3 Letu = (—1,3,1) and v = (4,7,0). Find the components of

e

{a) 2u + 3v (bh) u — v (c) ‘

Solution

(@) 2u +3v=2(-1.3,1) +3(4,7,0) = (-2.6,2) + (12.21,0) = (10,27.2)
) u—v=(-1,31) — (47.0) = (-1 =43 -7,1 -0) = (=5,-4,1)

4 S EENCR ORI

b | e
bl | =

k]

b | =

ic)
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Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

i=(1,0,0), j=(0,1.0), and k= (0,0,1).

Any vector v = (v, v,. vy} can be written as a linear combination of the standard unit
vectors as follows:

v={vhvervy) = (v.0,0) + (0,v,,0) + (0,0, v5)

— 0,(1,0,0) + v,(0,1,0) + v3(0,0,1)
- L'Ji + l.lgj + 1.:'311'..

.‘fﬂz =(x —xi+ (n—w)j+ (& — gk
If v # 0, then its length |v| is not zero and

1

_‘.'

M

That is, v/ |'¢| 1s a unit vector in the direction of v, called the direction of the nonzero
vector v.

1
=nih =t

16



EXAMPLE 4 Find a unit vector u in the direction of the vector from P,(1,0, 1) to
Py(3. 2. 0).

Solution We divide PP, by its length:
PP=C3-1i+Q—-0j+0—-Dk=2i+2j—k

PR = V2P + @F + (1P =Vad+4+1=19=3

PP, 2 +2—k
- L2 el TR Y
|PLP2|
This unit vector u is the direction of Pﬁz. |

EXAMPLE 5 If v = 3i — 4j is a velocity vector, express v as a product of its speed
times its direction of motion.

Solution  Speed is the magnitude (length) of v:
v = V(3)?* + (-4 = V9 + 16 = 5.

The unit vector v/|v| is the direction of v:

vl 5 s 5t
So
v=3i- 4= @1—%1) N

[,l:lié_:th IZJirl_ﬁn of motion
(speed)

If v # 0, then

ﬁ is a unit vector called the direction of v;
2. the equation v = |v |— expresses v as its length times its direction.

M

17




EXAMPLE 6 A force of 6 newtons is applied in the direction of the vector
v = 21 + 2j — k. Express the force F as a product of its magnitude and direction.

"_r

Solution The force vector has magnitude 6 and direction ﬁ S0
v
: 20+ 25— k 2i + 2§ — k
F-—6' - 66— —g—
v V22T 12 3
2,201
= 6(31 + 34 3k). |

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a
70-mph tailwind blowing in the direction 60° north of east. The airplane holds its compass
heading due east but, because of the wind, acquires a new ground speed and direction.

What are they?

.

=%

500

u=(500,0) and v = (70cos60° 70sin60°) = (35,35\3).

Therefore,
u+ v = (53535V3) = 535i + 35\/3
lu + v| = V3352 + (3513)% = 5384
and
f = tan! HVI 6.5°.

535

The new ground speed of the airplane is about 538.4 mph, and its new direction is about
6.5° north of east. |

18



EXAMPLE 9 A 75-N weight is suspended by two wires,

Find the forces F, and F; acting in both wires.

(a)

F=F+F,=(0.75
F, = {—|F;|cos55° |F,|sin55%) and F, = (|F;|cos40°, |F;|sind0°).
Since F; + > = (0,75}, the resultant vector leads to the system of equations
—|F;| cos 55° + |F,| cos 40° = 0
|F| sin 55° + |F,| sin 40° = 75.

Solving for |F,| in the first equation and substituting the result into the second equation,

we get
Fy| cos 55° , |F}| cos 55°
| o5 40° and |Fy| sin 55° + ~eosd0e S0 40° = 75.

It follows that

B 15

|FJ| " sin 55° + cos 55° tan 40° 1.67N,
and
5| = 75 cos 55°
: sin 55° cos 40° + cos 55° sin 40°
75 cos 55 ~ 4318 N.

~ §in (55° + 409
The force vectors are then

F, = {—|F,|cos 55°,

F.|5’1n 55°) = (—33.08,47.24)
and

F, = {|F,|cos 40°,

F,|sin 40°) =~ (33.08,27.76).

19



The Dot Product

DEFINITION The dot product u-v (*u dot v"*) of vectors u = {u,, u,, i)
and v = (v, vy, v3) is the scalar

u*vy = Hjuy + lhn + l31rs.

EXAMPLE 1 We illustrate the definition.
(@) (1,—2,—1)+(—6,2,-3) = (1)(—6) + (—2)(2) + (—1)(—=3)
=—6—-4+3= -7

(b) (%1 + 35+ k)-mi —j+ 2K = (%){4] L3 + (D) = 1

Dot Product and Angles

The angle between two nonzero vectors u and v is # = cos ™' (W)
ul|v

The dot product of two vectors u and v is given by u+v = |u||v|cos 8.

EXAMPLE 2 Find the angle betweenu = i — 2j — 2k and v = 6i + 3j + 2k.
Solution We use the formula above:
uv=(D6)+ (23 +(22)=6 -6 —4=—4
uf = V(1) + 22 + (22 = V9 =3
v = VI6)?F + 32 + (2 = V49 =7

A= cus“( 2
uf|v]

The angle formula applies to two-dimensional vectors as well. Note that the angle #
1s acute if u+v = 0 and obtuse if u-v < 0.

—4 .
e -1 — o
) cos ((3)(?)) 1.76 radians or 100.98", H

20




EXAMPLE 3 Find the angle @ in the triangle ABC determined by the vertices
A=1(0,00,B=1(3,5),and C = (5, 2)

Solution The angle # is the angle between the vectors CA and CB. The component
forms of these two vectors are

CA=(-5-2) and CB= (-23).
First we calculate the dot product and magnitudes of these two vectors.
CA-CB = (-5)(-2) + (-2)3) = 4
[TA| = Ve + (27 = V29
ICB| = V(=27 + 3% = V13

Then applying the angle formula, we have

A = cus‘l(@) = cns"( _4 — )
|CA||CB| (V29)(V13)

== T8.1° or 1.36 radians. N
¥
T B35

»> X

21



Orthogonal Vectors

DEFINITION Vectors u and v are orthogonal if u-v = 0.

EXAMPLE 4 To determine if two vectors are orthogonal, calculate their dot product.

(a) u= (3,-2) andv = (4,6) are orthogonal because u-v = (3)(4) + (—=2)(6) = 0.
(b) w=3i — 2j + kand v = 2j + 4k are orthogonal because

u-v = (3)0) + (—2)2) + (1)x4) = 0.
(¢) 0 1s orthogonal to every vector u since

0-u= (0,00} (u,u, u3)
= (0)u,) + (0O)uy) + (O)uy) = 0. H

WORK

DEFINITION ~ The work done by a constant force F acting through a displace-
ment D = PQ is

W=F-D.

EXAMPLE 8 If |[F| = 40 N (newtons),
F in acting from P to {J is

D| = 3m, and # = 60°, the work done by

Work = F-D Definition
= |F||D|cos®
= (40)(3)cos 60° Given values
= (120)(1/2) = 60 1J (joules). |

22



The Cross Product

DEFINITION  The cross product u X v (**u cross v”') is the vector

u X v = (|ul|v| sin §) n.

The construction of u * v.

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u > v = 0.

23




lu X v| Is the Area of a Parallelogram

Because n 1s a unit vector, the magnitude of u > v 1s

lu X v| = |u||v| |sin@||n| = |u||v|sind.

Area = base - height

v =|u| - |v||sin 8|
. =luxy
| |
o/
| h = |v||sin 8]
|
.
0 e
The parallelogram

determined by u and v.

Calculating the Cross Product as a Determinant
Ifu=wmi+ wj+ wuskand v = vji + vnj + v;3k, then

i j k
uXv=|u U U.
v vz 13

EXAMPLE 1 Findu X vandv X uifu=2i + j + kand v = —4i + 3j + k.

Solution We expand the symbolic determinant:

i

k
11 2 1 2 1
uxXv=|[2 1 1=‘ i—‘ ‘j ‘ ‘k
301 4 1 -4 3
-4 3 1
= —2i — 6j + 10k

vaxuo=—(uxv)=2i+6 — 10k Property 3

24




EXAMPLE 2 Find a vector perpendicular to the plane of P(1,—1,0), (2, 1,—1),
and R(—1, 1, 2) (Figure 12.32).

Solution The vector P_é % PR is perpendicular to the plane because it is perpendicular
to both vectors. In terms of components,

PO=Q-Di+(0+1Dj+(-1-0k=i+2j—k
PR=(-1—Di+(l+1)j+@2—0k=-2+2j+ 2k

ik
PO FR=11"2 —1=‘2 zb_‘z Ji+‘2 Jk
2 2 2
— 6i + 6k O

EXAMPLE 3 Find the area of the triangle with vertices P(1,—1,0), Q(2,1,—1), and
R(—1.1,2)
Solution The area of the parallelogram determined by P, O, and R 1s
|FT“Q X ﬁﬂ = |6i + ﬁl{| Values from Example 2
= V(6)> + (6)> = V2:36 = 6V2.
The triangle’s area is half of this, or 3IV2. [

-

Ri—1.1.2)

— d ﬂ-r ’ .l_,-'.l.
PA-LOC AT
_." _"‘——\._i }n

. 02, 1,-1)

The vector P_Q * PR is
perpendicular to the plane of triangle POR
(Example 2). The area of tnangle POR is

2> half of |PQ x PR|



EXAMPLE 4 Find a unit vector perpendicular to the plane of P(1,—1,0), (2, 1,—1),
and R(—1, 1, 2).

Solution  Since I@ % PR is perpendicular to the plane, its direction n i1s a unit vector
perpendicular to the plane. Taking values from Examples 2 and 3, we have

PO x PR _ 6i
n= o XX _6itek_ 1, Ly O
PQ x PR| 6V2 V2 V2

For ease in calculating the cross product using determinants, we usually write vectors
in the form v = v,i + v,j + wv;k rather than as ordered triples v = (v, v,, v3).

Torque

Magnitude of torque vector = |r||F|sin#,

Component of F
perpendicular tor. _

Its length is |F| sin 8. 1
ts length is | sin Torque vector = r X F = (|r||F|sinf) n.

The torque vector

describes the tendency of the force F to
drive the bolt forward.
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EXAMPLE 5 The magnitude of the torque generated by force F at the pivot point P

—r

|PO % F| = |PO||F|sin70° = (3)(20)(0.94) = 56.4 ft-1b.

In this example the torque vector is pointing out of the page toward you. |

3 ft bar

201b
magnitude
force

—

The magnitude of the

torque exerted by F at P 1s about 56.4 ft-1b
The bar rotates counter-
clockwise around P.

27



Lines and Planes in Space

Lines and Line Segments in Space

Vector Equation for a Line

A vector equation for the line L through Fy(x,, v,. zy) parallel to v is

r{f) = Iy + Iv, —o0 << < oo,

where r is the position vector of a point P(x, y, z) on L and ry is the position vec-

tor of Fy(xp, Yo, Zo)-

Z

s
Fy(xp. ¥o. Zp)

A point P lies on L

—

through B, parallel to v if and only if B,P

is a scalar multiple of v.

Parametric Equations for a Line

The standard parametrization of the line through Fyix,. yg, zp) parallel to

v=ui+wmj+urkis

X — Iﬂ, + !‘-L’l., :'I.;' — J'Jﬂ -+ !‘.[.'11. il Eﬂ + I'Uj* —O0 =il
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EXAMPLE 1 Find parametric equations for the line through (—2, 0, 4) parallel to
v=2+4j -2k

Solution With Fy(xp, vo, 20) equal to (—2,0,4) and wvji + wj + v;k equal to
2i + 4j — 2K, Equations (3) become
x=-2+ 2, y = 4,

#

Il
=
|
L

>

\iﬂf—z, 0, 4)
4 ] ~f =1

P,(0,4,2)
Nt =1

/ KH |

- P g

4 —3

£ — y

. 1=2XP2.8.0
v=2i+4j -2k \

Selected points and
parameter values on the line in Example 1.
The arrows show the direction of

increasing f.

EXAMPLE 2 Find parametric equations for the line through P(—3,2,—3) and

(1, —1.4).

Solution The vector
PO =(1—(=3)i+ (-1 —2)j+@4— (-3)k =4i — 3j + 7k

is parallel to the line, and Equations (3) with (xg, v, 2p) = (—3, 2, —3) give
x=-3+ 4 y=2— 3t z=-3+ 171

We could have chosen Q(1, —1. 4) as the “base point™ and written
x=1+ &4, y=—1—3t, z=4 4+ Tt.

These equations serve as well as the first; they simply place you at a different point on the
|

line for a given value of 1.
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EXAMPLE 3  Parametrize the line segment joining the points P(—3,2,—3) and
Q(,-1,4)

Solution We begin with equations for the line through P and Q, taking them, in this
case, from Example 2:

X==3+ 4, y=2-3, B i Y 8
We observe that the point
»n2)=C3+4,2-3t,-3+T)

on the line passes through P(—3,2,-3) at t = 0 and Q(1,~-1,4) at r = 1. We add the
restriction 0 = 7 = 1 to parametrize the segment:

x==3+ 4, y=2-3, 2==-3+N, 0=1r=<L [}

30



An Equation for a Plane in Space

Equation for a Plane
The plane through F(x;. v;. ;) normal to n = Ai + Bj + CK has
Vector equation: n -ﬁ” =0
Component equation: Alx —x) + By —y) + Cz — ) =0
Component equation simplified: Ax + By + Cz = D,  where
D= Ax, + By, + Cg

f Plane M
7

Pix.y.2)
[ ]

Pn'l:.x o Yo ='E£|}//~

The standard equation
for a plane in space is defined in terms of a
vector normal to the plane: A point P lies
in the plane through F, normal to n if and
Dnlyifn-.lf‘P = 0.

EXAMPLE 6 Find an equation for the plane through Fy(—3, 0, 7) perpendicular to
n=5i+2j— k.

Solution The component equation is
Sx— =3+ 2y -0+ =1z —T7) = 0.
Simplifying, we obtain
x+15+2y—z+7=0
x + 2y —z=-22. o

Notice in Example 6 how the components of n = 5i + 2j — k became the coeffi-
clents of x, v, and z in the equation 5x + 2y — z = —22. The vectorn = Ai + Bj + Ck
1s normal to the plane Ax + By + Cz = D.
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EXAMPLE 7 Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and
C(0, 3, 0).

Solution We find a vector normal to the plane and use it with one of the points (it does
not matter which) to write an equation for the plane.
The cross product

i j  k
ABxAC=1{2 0 —1|=3i+2j+6k
0 3 -1

1s normal to the plane. We substitute the components of this vector and the coordinates of
A(0, 0, 1) into the component form of the equation to obtain

3 —0) + 2y —0) +6(z— 1) =0
3x + 2y + 6z = 6. N
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EXAMPLE 10 Find the point where the line

_1:=%+2t, vy =—2, z=1+t

intersects the plane 3x + 2y + 6z = 6.

Solution The point

8
(§ + EL —21. 1 + f-)

lies in the plane if its coordinates satisfy the equation of the plane, that is, if

3(% + Et) + 22 +6(1 + =6

8 +6t—d+6+66=6
8t =—8
t = —1.

The point of intersection is

.2y = (% — 22,1 - 1) = (% 2, l}).
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Angles Between Planes

The angle between two intersecting planes is defined to be the acute angle between their
normal vectors

EXAMPLE 12 Find the angle between the planes 3x — 6y — 2z = 15 and
2x +y— 2z = 5.

Solution The vectors
n, = 3i — 6j — 2k, n, =2 +j— 2k

are normals to the planes. The angle between them is

A= cos"( Bl )
Iy ||y

= cos | (;—1) = 1.38 radians. About 79 degrees |

The angle between two
planes is obtained from the angle between
their normals.
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Chapter Three

Partial Derivatives

Partial Derivatives of a Function of Two Variables

If (xp, ¥z 15 a pount in the domain of a function fix, ¥}, the vertical plane v = vy will cut
the surface 7 = f(x, ¥) in the curve 7 = f(x, %) (Figure 14.16). This curve is the graph of

the function z = fix, ¥) in the plane v = ¥,. The horizontal coordinate in this plane is x;
the vertical coordinate is 2. The y-value is held constant at ¥, 50 ¥ is not a vanable.

We define the partial derivative of f with respect to x at the point (x;. ¥) as the ordi-
nary denivative of fix, wp) with respect to x at the point x = x5. To distingmsh partial
denivatives from ordinary derivatives we use the symbol @ rather than the d previously
usad. In the defimition, & represents a real number, positive or negative.

4+ Vertical axis in
the plane y = ¥,
P, yo. flxg, o) -~

K] 7 =fix,y)

i}

The carve 7 = fix. )
in the plane y = y,

Tangent line

}6_----— S

S Xg Yo h |
uﬂ + h, )'D)
Horizontal axis in the plane y = y;

FIGURE 14.16 The intersection of the plane y = v,
with the surface 7 = f(x, y), viewed from above the first
quadrant of the xy-planc.
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EXAMPLE 1  Find the values of #f /i and f /ay at the point (4, —3) if
fE=x+3y+y- L

Solution  To find &f /dx, we treat v as a constant and differentiate with respect to x:

i
f =L+ 3y +y - D=2+ 31y +0-0=2x+ 3y

The value of af /fax at (4, —5) 15 2(4) + 3(—3) = —
To find 4f /iy, we treat x as a constant and differentiate with respact to v:

af

= = E’l{x Ay 4y —1)=04+3-x-141—-0=73x + 1,

The value of &f fav at (4. —-5)is 3(4) + 1 = 13.

EXAMPLE 2 Find &f /iv as a function if fix. ¥) = v sin xy.

Solution  We treat x as a constant and f as a product of ¥ and sin xy:
d B
F= Eysingy) = yEsinn + s &

= {}'cus;}']nﬁm']n + SINX¥ = X¥ COSX¥ + sl Xy.
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EXAMPLE 3 Find f. and f, as functions if

2y

& =y

Solution  We reat f as a quotient. With ¥ held constant, we use the quotient mle to pet

3 2y {}'+msx}%(2_ﬂ—2y%{}'+mﬁx}
=i (2) -
i

¥+ oosx (¥ + cosx)?
(¥ + cosx}0) — IW—sinx) 2y sin x
B (¥ + cosx)® (¥ + cosx)

With x held constant and again applying the guotient rule, we pet

B g @
a 2y {y+cmr}$[._}'} 2_}@(_}+msx}
fr_;gp Y + cosx (¥ + cosx)?

_(y+cosxl2) — 2N Zcosx
(v + cos 1) (¥ + cos X

Implicit differentiation works for partial derivatives the way it works for ordinary
derivatives, as the next example illustrates.
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EXAMPLE & If x. ¥, and 7 are independent variables and
flx, ¥, D) =xsin{y + 3z),

then
I:} B -
ﬂ*—‘f = ;—_ [xsin(y + 32)] = xa%sin (¥ + 37) x held constani
=XCo8(y + 33%(_? + 37) Chain rule
v held constani [ ]

= 3xcos(y + 32).

Second-Order Partial Derivatives
When we differentiate a function fix, v) twice, we produce its second-order derivatives.
These derivatives are usually denoted by

& f i f
o O fa ) or fyy,
#f i f
ﬁ or fi, and ﬁ or fey-
The defining eguations are
f _ o fof\ P _ (3
ap? oA han )t daway T oaw Lav )
and =0 on. Motice the order in which the mixed partial derivatives are (aken:
i f : . i )
Ty Dvifferentiate first with respect to v, then with respect to x.

,fp_ = {f) Means the same thing.
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EXAMPLE 9 If f(x.¥) = xcos vy + v&, find the second-order detivatives

it f i f i f atf
7 o — and e
ax iy i ayt dx dy
Solution  The first siep is to calculate both first partial derivatives.
P m{xcm_p Ve v a}{xcm_} ¥
= cosy + ye = —xsiny + &

Mow we find both partial derivatives of each first partial:
A af @ af
v .n-( ) —siny + & way rjr E = —x&inYy + &°

2-2(Y)- 52 (2)
ir? uir(rjr ye~. o o\ " X COS Y.

THEOREM 2—The Mixed Derivative Theoram
If fix, ¥) and its partial derivatives f_. _f f iy and _-F are defined throughout an
Open Tegion contaimng a point {a, &) am:l are all continuous at (a, &), then

fola, b) = fula, ).

£

iw
A iy

EXAMPLE 10  Find if

&
=1y + .

W = X¥ E

Solution The symbol &% /ix dy tells us to differentiaie first with respect to ¥ and then

with respect to x. However, if we interchange the order of differentiation and differentiate

first with respect to x we el the answer more guickly. In two steps,
w W _
=Y and aar 1.

If we differentiate first with respect to v, we obtain #*w /ax v = 1 as well. We can differen-

tiate in either order because the conditions of Theorem 2 hold for w at all points (xg. %).

[ |
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EXAMPLE 11

Find £, if fx,y,2) = 1 — 2%z + 2%.

Solution We first differentiate with respect to the variable y, then x, then y again, and
finally with respect to z:

The Chain Rule

fy = —dayz + x*
f}, = —dyz + 2x
foy = —%
Fye = —4- |

To find dw /dt. we read down the route
from w to ¢, multiplying derivatives

along the way.

Chain Rule
- Dependent
w = f(x) pe
L f variable
dw
dx
e Intermediate
’ variable
dx
dt
f Independent
f variable
dw _ dw ds
dt — dx dr

The Chain Rule for functions of a single variable studied in Section 3.6 says that when
w = f(x) is a differentiable function of x and x = g(#) is a differentiable function of t, w is
a differentiable function of f and édw /dt can be calculated by the formula

dw  dwdx

& dd

For this composite function w(f) = f(g(t)), we can think of 7 as the independent variable
and x = g(t) as the “intermediate variable,” because t determines the value of x which in
turn gives the value of w from the function f. We display the Chain Rule in a “dependency
diagram™ in the margin. Such diagrams capture which variables depend on which.

For functions of several variables the Chain Rule has more than one form, which
depends on how many independent and intermediate variables are involved. However,
once the variables are taken into account, the Chain Rule works in the same way we just
discussed.

Functions of Two Variables

The Chain Rule formula for a differentiable function w = f(x, y) when x = x(#) and
v = y(1) are both differentiable functions of t is given in the following theorem.

and

or

THEOREM 5—Chain Rule For Functions of One Independent Variable
and Two Intermediate Variables

If w = f(x,y) is differentiable and if x = x(f), y = y(t) are differentiable func-
tions of £, then the composition w = f(x(f), y(f)) is a differentiable function of ¢

%v = (@), yO)x'() + fyx (@), y©)y' (@),

dw  Of dx

dt — dx dt *

iy dt”
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EXAMPLE 1 Use the Chain Rule to find the derivative of
W = Xy
with respect to t along the path x = cost, v = sinf. What is the derivative’s value at
t=a/27
Solution We apply the Chain Rule to find dw /dt as follows:

dw _ owdx | owdy
dt dac dr  dy dt

= d{—;?} % {cost) + —E{;}?} % (sin f)

= (yM—sinf) + (x)(cos 1)

= (sin {}{—sin 1) + (cos t}cos 1)
= —sin’t + cos’f

= cos 21.

In this example, we can check the result with a more direct calculation. As a function of 1,

: l .
W= Xy = casi'51ni‘=§51n2—!.

SO
dd}: = %(% sin 21') = %{2 cos 2f) = cos 2.
In either case, at the given value of 1,
2] =)
— = cos| 25| = cosm = —1. [ |
dt | _ 2 2
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Functions of Three Variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it
only involves adding the expected third term to the two-variable formula.

THEOREM &—Chain Rule for Functions of One Independent Variable and
Three Intermediate Variables

If w = f(x, v, 7) is differentiable and x, v, and z are differentiable functions of &,
then w is a differentiable function of  and

dw _awdx  owdy owds
dt — axdt " aydt azdt”

EXAMPLE 2 Find dw /dt if

W =2xy + I, X = Ccost, y=sini‘._, I =1L
In this example the values of wit) are changing along the path of a helix (Section 13.1) as ¢
changes. What is the derivative’s value at + = 07

Solution Using the Chain Rule for three intermediate variables, we have
dw _awds  owdy owdz
dt — dxdt  dydt " oz df
= (¥)(—sin ) + (x}cos ) + (1)(1)

. . Substitute for intermediate
(sint){—sin 1) + (cosi)cos ) + 1 )

variables.

—sin®t + cos?t + 1 =1 + cos 2,
50

I
b
|

g =1+ cosil)

=0

Chain Rule

w = flx,y,z) Dependent
M variable
dw S, dw

ax 7 g N 8z

y ', Intermediate
Xa Y »I
, e varahles

dx\x\xﬁ ;‘_/E

di A dt

e Independent
1 vanahle

dw _ aw dx 4w dy LW dz
T I dr o Gy dr o Bz dr
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Functions Defined on Surfaces

If we are interested in the temperature w = f(x, v, z) at points (x. v, z) on the earth’s sur-
face, we might prefer to think of x, v, and z as functions of the variables r and s that give
the points’ longitudes and latitudes. If x = gir, 5), v = hir, 5). and z = kir, 5). we could
then express the temperature as a function of r and 5 with the composite function

w = flglr, 5), h(r, 5), k(r, 5)).

Under the conditions stated below, w has partial derivatives with respect to both r and s
that can be calculated in the following way.

THEOREM 7—Chain Rule for Two Independent Variables and Three
Intermediate Variables

Suppose that w = f(x, v, z). x = glr.5). v = hir. 5), and z = kir, 5). If all four
functions are differentiable, then w has partial derivatives with respect to r and s,
given by the formulas

dwdry  dw dY

aw dw 7
ar —axor T ayor  agar
aw

is

_E!wdr dw 9y _w
ax as | Ebya.r iz
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w = flx, .2
Dependent .
vanable IE FAR
aw /7 aw
f a ,/’ aw I
Intermediate I______ T P
nlermedt x ¥ z|! T ¥ iz
vanables ' l———| H | gy ’
\ 2 /
E dar /fﬂ
Independent ar /’/ ir
vanables y
w = fi g(r, 5), hir, 5), k(r, 5)) dw _dwdy | dw dy | dw dz
ar  dx ar 8y ar dz ar
(a) (b)
EXAMPLE 3 Express éw /ar and dw /ds in terms of r and s if
r 5
w=x+2y + 7, x=7., y=r"+Ins,
Solution Using the formulas in Theorem 7, we find

aw _ @E+a_w§+dwd‘
ar dvar  dydr dz dr

m(%) L2020 + QI

i+ =1+

_war  owd  owie
axas  dyds | oz as

- m(—s%) - (2}(%) +e0 =35

w = fix, y.z)

aw “\ ﬂn

// 1’]_}' \

Xe sy
g /
ax s, ds
a5 a:
5
aw dx aw ay |, dw az

aw _
a5

Z

T as T ayas oz s

(c)

= 2r.

Substitute for intermediate variable 7.

If f1s a function of two intermediate variables instead of three, each equation in

Theorem 7 becomes correspondingly one term shorter.

Chain Rule
w = flx, ¥}
w N aw
dr ., d¥

N\

b

e }}'

-y f

f'lr“ ¢ E.hr

J_/ dar

dw dy
r}'|.- ar

dw _ ow dx

ar dx dr



THEOREM 8—A Formula for Implicit Differentiation
Suppose that F{x, v) is differentiable and that the equation F(x, v) = 0 defines y
as a differentiable function of x. Then at any point where F, = 0,

dy F

EXAMPLE 5  Use Theorem 8 to find dy /dx if ¥* — x* — sinxy = 0.

Solution Take Fix, v) = ¥* — x* — sinxy. Then

dy K —2x—yeosxy  2x + ycosxy
g~ F, 2y —xcosxy 2y — XCOSXY

This calcalation 15 significantly shorter than a single-vanable calculabon using imphcit
differentiation. |

il 7
EXAMPLE & F'indﬁandﬁal[ﬂ.ﬂ,ﬂ)it‘r" + 2+ v+ zoosy = 0.
Solution Let Fix, ¥,7) = x* + 7% + v# + zcos y. Then
F, = 3x? + gyes, F,=¢%—zsiny, and F, =27+ xye% + cosy.

Since F(0,0,0) = 0, F,(0,0,0) = 1 # 0, and all first partial derivatives are continuous,
the Implicit Function Theorem says that Fix, v, ) = 0 defines 7 as a differentiable func-

tion of x and v near the poant {0, 0, 0). From Equations (2},
iz F, 3x? + 7yt ar F, F — zsiny

o~ F, 27+ Xy + cosy and iy~ F, 22+ xS +oosy

AL (0, 0, 0) we find
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Directional Derivatives and Gradient Vectors

Directional Derivatives in the Plane

We know from Section 14.4 that if f(x, y) is differentiable, then the rate at which f changes
with respect to t along a differentiable curve x = g(f), y = h(1) is

df _ofax  ofdy
dt  dxdt  dydt’

At any point Fy(x,, yy) = Fy(g(ty), h(ty)), this equation gives the rate of change of f with
respect to increasing f and therefore depends, among other things, on the direction of
motion along the curve. If the curve is a straight line and ¢ is the arc length parameter
along the line measured from F, in the direction of a given unit vector u, then df /dt is the
rate of change of f with respect to distance in its domain in the direction of u. By varying
u, we find the rates at which f changes with respect to distance as we move through F, in
different directions. We now define this idea more precisely.

The directional derivative defined by Equation (1) is also denoted by
“The derivative of f
D, f(Fy) or Du_f| Py in the direction of u,
evaluated at Py"
The partial derivatives f,(xp, yo) and f,(xq, yp) are the directional derivatives of f at Fj in
the i and j directions. This observation can be seen by comparing Equation (1) to the defi-
nitions of the two partial derivatives given in Section 14.3.

Linex =xy + suy, vy = yp + 5l

u=ui+uj

Direction of
increasing §

0 / *

FIGURE 14.27 The rate of change of f
in the direction of u at a point F, is the rate
at which f changes along this line at F,.
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DEFINITION The gradient vector (or gradient) of f(x, y) is the vector

af . af .

?f:EI'FE_].

The value of the gradient vector obtained by evaluating the partial derivatives
at a point Fy(x,. y,) is written

vf | Py or V fxg, o).
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The notation Vf is read “grad £ as well as “gradient of " and “del f.” The symbol V by
itself is read “del.” Another notation for the gradient is grad f. Using the gradient notation,
we restate Equation (3) as a theorem.

THEOREM 9—The Directional Derivative Is a Dot Product
If fix, v) is differentiable in an open region containing Py, vp). then

df B

the dot product of the gradient Vf at F, with the vector u. In brief, D, f = Vf-u.

EXAMPLE 2 Find the derivative of fix, v} = xe¥ + cos (xy) at the point (2, 0) in the
direction of v = 3i — 4j.

Solution Recall that the direction of a vector v is the unit vector obtained by dividing v
by its length:

The partial derivatives of f are everywhere continuous and at (2, 0) are given by

=" —0=1
(2,0

fA2.0) = (& — ysin (xy))

= 2" —2-0=2.

(2,0)

f2.0) = (xe — xsin (xy))

The gradient of f at (2, 0) is

Voo = fl2 0 + £,2.00f = i + 2j
(Figure 14.29). The derivative of f at (2, 0) in the direction of v is therefore

Dufliag = Vflao-u Eq. (4) with the Dyf|p notation
PP O = PR P I B S
= (i + 2j) (51 5]) 5% 1. [ |

Evaluating the dot product in the brief version of Equation (4) gives
D =Vf-u=|Vf|lu| cos® = |Vf| cos b,

where # is the angle between the vectors u and V f, and reveals the following properties.
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Properties of the Directional Derivative D,f = Vf-u = |Vf| cos#

1. The function f increases most rapidly when cos # = 1, which means that
f = 0 and u is the direction of Vf. That is, at each point P in its domain,
f increases most rapidly in the direction of the gradient vector Vf at P. The
derivative in this direction is
D.f = |Vf| cos (0) = |Vf].
2. Similarly, f decreases most rapidly in the direction of —Vf. The derivative in
this direction is D,f = |Vf|cos (w) = —|Vf].

3. Any direction u orthogonal to a gradient Vf # 0 is a direction of zero change
in f because # then equals 7/2 and

Duf = |Vf|cos (w/2) = |VF|-0 = 0.

EXAMPLE 3 Find the directions in which f(x,y) = (x2/2) + (¥?/2)

(a) increases most rapidly at the point (1, 1), and

{(b) decreases most rapidly at (1. 1).

{¢) What are the directions of zero change in f at (1, 1)7

Solution

{a} The function increases most rapidly in the direction of Vf at (1, 1). The gradient there is

Vil =i + i) =i+ j.
(L, 1}

Its direction is
i+ i+ ] 1

= =—t L, L,
i+ VOP+aF V2 V2
ib) The function decreases most rapidly in the direction of —Vf at (1, 1), which 1s

n=—7i+?j and —ﬂ:ji—?j.
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Functions of Three Variables

For a differentiable function f{x, v, z) and a unit vector u = u;i + u,j + w;K in space,
we have

af . af . af
?f=gl+5_|+a—zk

and

af af af
Dyf=Vf-u = T ay e + 3z Ua-

The directional derivative can once again be written in the form
D,f = Vf+u=|Vf||lu| cos 8 = |Vf]| cos 8,

so the properties listed earlier for functions of two variables extend to three variables. At
any given point, f increases most rapidly in the direction of Vf and decreases most rap-
idly in the direction of —V f. In any direction orthogonal to V£, the derivative is zero.
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EXAMPLE &

{a) Find the derivative of f(x.¥.7) = x° —xy* — 7 at Ff1,1,0) in the direction of
¥v=2— 3] + 6k

(b) In what directions doas f changs most rapidly at &, and what are the rates of changs
in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

v = V2P 3P+ (6 = v =T

vy _2, 3.,.6
u=g-Fi-Fl+gk

The partial derivatives of f at fy ame
fo= (32— ¥h =2 fy=-2w

(L1Lm ‘I’],' 1,

The eradient of fat Fy s

=-2, f,= _|‘ =
(,1,m

Vioin=21-2] -k

The derivative of f at F in the direction of v is therefora

2 3 ]
Dof gm0 = Yo o-w= (20 - 2) - k}'(§I 51+ ﬁk)

~la

1|
I

=l

=$+

(b) The function increases most rapadly in the direction of V= 2i — 2j — k and de-
creases most rapidly in the direction of —V . The rates of change in the directions are,
respechively,

|Vfl = VEF+ 2P + F1IF=4v9=3 and —|Vf=-3

51



Tangent Planes and Differentials

DEFINITIONS The tangent plane to the level surface f(x,v.7) = ¢ of a dif-
ferentiable function § at a point Fy where the gradient is not zero is the plane
through Ay normal to V|,

The normal line of the surface at % is the line through 4 parallel to Vfip,.

The results of Section 12.5 imply that the tangent plane and normal line satisfy the
following equations, as long as the gradient at the point ; is not the zero vector.

Tangent Plane to fix, v, £} = ¢ at Pylxy, ¥y. Zo)
fdfadix — xg) + FFy — Yo + fAFNz — Zp) = 0 (1)
Mormal Line to fix, ¥, £} = ¢ at PylXg. Yo, o)
x=xp+ fRM, ¥y=1+ fFM.  1=1+ fiFH (2)

EXAMPLE 1 Find the tangent plane and normal line of the level surface
fix,vno=x+¥+z1-9=0 A circular paraboloid
at the point Fyil, 2. 4).

Solution  The surface is shown in Figure 14.34.
The tangent plane is the plane through Fy perpendicular to the pradient of f at . The
eradient is

Vg, = (260 + 23] + k) =2+ 4+ k.
1,2, 4)

The tangent plane is therefore the plans
Ax -1 +4Hy -2+ z-H=0 o WwH+ay+z=I4
The Lhine normal to the surface at F is
=1+ 3, ¥y=2+ 4, I=4+1L |
To find an equation for the plane tangent to a smooth surface 7 = fix. ¥) at a point
Folxg, ¥o. Zn) wheme 73 = f(xg, %), we first observe that the equation 7 = fi{x, ¥) is equiva-

lent to fix, ¥) — z = 0. The surface 7 = fix, ¥) is therefore the zero level surface of the
function Fix, v, z) = fix, ¥) — z. The partial derivatives of F are

i N e
E=gUay-0=L-0=F
d ;
F=gU&)-0=f-0=f
—i F] — 7)) = _— = -
F=gUay-2=0-1 1.

The formula

FAPMX — ) + F(R)y — 3p) + FiRNz — ) = 0
for the plane tangent to the level surface at Fy therefore reduces to

Frlxy, Yokx — xg) + fl¥p. Wby — W) — (2 — @) =0,
a5 long as the gradient is not the #ero vector at the point B,



Estimating Change in a Specific Direction

The directional derivative plays a role similar to that of an ordinary derivative when
we want to estimaie how much the value of a function f changes if we move a small
distance ds from a point £, to another point nearby. If f were a function of a single
variable, we would have

df = f'{Fy) ds. Ordinary derivative » increment
For a function of two or mone variables, we use the formula
df = (‘F_flp: ~ W) s, Directional derivative = increment

whem u is the direction of the motion away from Fy.

Estimating the Change in f in a Diraction u
To estimate the change in the value of a differentiable function £ when we move
a small distance ds from a poant £ in a particular direction w, use the formula

df = {"i’ﬂpn' u) ds
Dirctional Dislance
derivative increment

EXAMPLE 4 Estimate how much the value of

Flx,¥,0) = ¥sinx + 2yz
will change if the point Pix.¥ ) moves 0.1 umt from F(0, 1. 0) straight toward
B2, 2, -2).

Solution  We first find the derivative of f at £ in the direction of the vector P,;TP, =
2i + j — 2Kk. The direction of this vector is

The gradient of f at F is
Vilwim = ((yoosxid + (sinx + 27)f + vk) =1+ 2k.
1,0

Therefore,

2 1 2 2 4 2
?fp:'u=(]+1k}'(§i+§j —Ek) =337

The change df in f that results from moving ds = 0.1 unit away from £ in the direction
of u is approximately

df = (Vflp, ulds) = (—%)m.l} = —0.067 unit.
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Chapter Four

MuLTIPLE INTEGRALS

Double Integrals over Rectangles

We begin our mvestigation of double integrals by considering the simplest type of planar
region, a rectangle. We consider a function f(x, y) defined on a rectangular region R,

R a=x=b c=y=d

THEOREM 1 Fubini’s Theorem (First Form)
If f(x, ) 15 continuous throughout the rectangular region R:a = x = b,
¢ =y =d, then

_/ff{.r,}'}dei = lalbﬂx,y) fimflf‘=£b‘£dﬂx,y] dy dx.

R

EXAMPLE 1  Evaluating a Double Integral

Calculate _HR flx,y) dA for
f{xj_}'}=l—5xly and R 0=x=2 -1=y=1

Solution ~ By Fubimi’s Theorem,

/ f{u}dhﬁfu —5x1_u)ffx@=[11[x_hay];:§ 5

R
1 - 1

Reversing the order of integration gives the same answer:
2

2 r1 2
eyl _ _ 2,2,2]=!
A-‘/:I{I 6x°y) dy dx 1; [y 3xy E,=_1 dx

= fé[(l —3xY) — (=1 — 3x9)] dx
0

=/2dx=4_
0
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EXAMPLE 2  Finding Volume

Find the volume of the prism whose base 1s the triangle in the xy-plane bounded by the
x-axis and the lines y = x and x = 1 and whose top lies in the plane
z=flx,y) =3 —x—y

Solution  See Figure 15.11 on page 1075. For any x between 0 and 1, y may vary from
y = 0toy = x (Figure 15.11b). Hence,

1 prx 1 y2 =x
r=[[o-x-naa-[ly-o-%]a
0.J0 0 y=0
1 2 2 3 =1
_ _ 3x” _ 3 _x _
—j; (3x z)dx [2 7 | 1

‘When the order of integration is reversed (Figure 15.11c), the integral for the volume is
x=1

171 1 2
V=‘//{3—x—y)dxdy=[[3x—%—w} dy
0 Jy 0 x=y

1 2
=£ (3—%—y—3y+y?+y2)ay

1 Jqp=1
_ B 3 a2y o2 [ =
—£ (2 4y+2y)afp—[2y 2y+2}';=0—1_

Yy x.=:1
/=x
y=x
R
0 y=0 1 R
()
y x=1
/=x
x=\) /X=1
R
0 1 :
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Finding Limits of Integration
Ve now give a procedure for findmg limats of mtegration that applies for many regions m
the plane. Ramons that are more complicated . and for whuch thi= procedure fals, can often
be splif up mie pleces on whech the procedure works.

When faced with evaluatmz [, fix, ) dd, integrating first with respect toy and then
with respect to x, do the followings:

1.  Skerch. Sketch the remon of mtegration and label the boumding cuwrves.

1. Find the y-limits of mtegration. Imagine a vertical line I cutting through B m the di-
mection of mereasing v, Mark the y-valies where L enters and leaves. These are the
y-limats of infegration and are usually functions of x (mstead of constants).

3. Find the x-limits of imtegration. Choose x-limmts that melude all the vertical bnes
through B The mtegral shown here 15

X
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To evaluate the same double intezral a5 an iterated mntegral with the order of mntegra-
tion reversed, use honzontal lmes mnstead of vertical lmes m Steps 2 and 3. The integral 1=

.}Jﬂx:_m‘l dd = J['[I-;I_ﬁflx:yl e .

Largast y ¥
wy=1 Extum at

-\l_xl_'p

F K\J<
-
Srmallast ! Wit
ay=0 \ r=V1-p
¥l ;

0 1

EXAMPLE ¢  Reversing the Order of Integration
Sketch the repron of intesration for the mtesral

fjﬂ&+m@ﬁ
o JF

and write an equivalent infegral wath the order of mtegration reversed.

Solution  The region of intemiation is given by the mequalifies x* = y = 2x and
0 = x = 2. T is therefore the resion bounded by the curves ¥ = x° and 3 = 2x between
x = Oand x = 2 (Figure 15.13a).

¥ ¥ .
i t fes
v/
=3 r{iﬁ_: \r"}_-
- ! . / ! .
i 2 ] 2
) ®

FIGURE 15.13 Region of inegration for Example 4.
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DEFINITION  Area
The area of a closed, bounded plane region R is

A=l;[:i.-!.

EXAMPLE 1  Finding Area
Find the area of the region & bounded by ¥ = x and ¥ = x* in the first quadiant.

Solution Ve sketch the remon (Figuwre 15.15), notng where the two ourves infersect,
and calculate the area as

[ [on-[bLe

! & 2 1
—ﬁ{x—fltﬁ—[?—?-n—g.

Motice that the single infegral jn‘{x— x%) dx, obtained from evaluating the inside
itterated mtegral, 15 the integyal for the area between these two curves wang the method of
Section 3.5. ]

EXAMPLE 2 Finding Area

Find the amea of the region R enclosed by the parabola y = x* and the line y = x + 2.

Solution If we dnade R mio the remons F) and K> shown m Fizure 15163, we may cal-
culate the area as

1 vy 4 Py
A=[/i{+ﬂi{=ff _&xq-,-arff v dy.
A A DSy 1 Jp-1
On the other hand, reversing the order of mmtegration (Fizure 15.16b) gives

4 =.[f.[:f3:£}'dr.

i-hl)/
M |
]

] )

This second result, which requies only one mtegral 15 simpler and 15 the only one we

would bother to write down m practice. The area 1=

[ Jz+2 2
.:1=f y]x dx=f{x+z-xl:u&=
-1L 1= -1




Double Integrals in Polar Form

Integrals in Polar Coordinates

When we defined the double integral of a fancton over a region K m the xy-plane, we
began by cuthng R into rectangles whose sides were parallel to the coordinate axes.
These were the natural shapes to use because thewr sides have either constant x-values or
constant y-values. In polar coordinates, the natural shape 15 a “polar rectangle™ whose
ades have constant r- and f-values.

Suppose that a fimetion fi{r, #) 15 defmed over a region & that 15 bounded by the rays
# = e¢and = B and by the comtnmons curves r = g andr = g5( 7). Suppose also that
0= g@if) = gd?) = a for every value of § between o and 5. Then K hes m a fan-chaped
rezion () defined by the mequaliies 0 = r = gand & = # = B. See Figue 15.21.

FIGURE 15.23 The observation that

area of area of
.I!l..ldlk = -
large sector small sector

leads to the formula Ad, = rp Ar A,
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We cover J by a grid of circular arcs and rays. The arcs are cut from circles centered
at the origin, with radii Ar, 2Ar, ..., mAr, where Ar = a/m. The rays are given by

0= a, #=o+ AD, 0=+ 2A8, R =a+mAb=p,
where Al = (B — a)/m’. The arcs and rays partition  into small patches called “polar
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling
their areas AA;, AA,. . ... AA,. We let (r., #,) be any point in the polar rectangle whose
area is AA,. We then form the sum

S, = 3 flr, ) AA,.
=1

If f is continuous throughout R, this sum will approach a limit as we refine the grid to make
Ar and A# go to zero. The limit is called the double integral of f over R. In symbaols,

lim S, = ffﬁjr, f) dA.

R

To evaluate this limit, we first have to write the sum S, in a way that expresses A4, in

terms of Ar and A@. For convenience we choose r; to be the average of the radii of the

inner and outer arcs bounding the kth polar rectangle AA,. The radius of the inner arc

bounding AA; is then r; — (Ar/2) (Figure 15.23). The radius of the outer arc is
ry + (Ar/2).

The area of a wedge-shaped sector of a circle having radius r and angle 8 is

A =20
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as can be seen by multiplying r”, the area of the circle, by 8/2, the fraction of the cir-
cle’s area contained in the wedge. So the areas of the circular sectors subtended by these
arcs at the origin are

1 Ary
Inner radius: 2("} — 2) Ad

A 2
(rk + T’) AB.

AA, = area of large sector — area of small sector

2 2
2T (] Forsr

Owuter radius:

b=

Therefore,

2 2 2

Combining this result with the sum defining §, gives
"
S, = > flre. B Ar A6,
k=1
As n — oo and the values of Ar and A# approach zero, these sums converge to the double

integral
lin_1 S5, = j] flr. ) r dr db.

R

A version of Fubini's Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and # as

0=B pr=e:0)
ﬂfffs ) dA = f fir, 8y rdr df.
) B=a o r=p,(

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. We illustrate this using the region R shown in Figure 15.24. To evaluate
_j_r,IrR_f[r., ) dA in polar coordinates, integrating first with respect to r and then with respect
to A, take the following steps.

1. Sketch. Sketch the region and label the bounding curves (Figure 15.24a).

I

Find the r-limiis of infegration. Imagine a ray L from the origin cutting through R in the
direction of increasing r. Mark the r-values where L enters and leaves R. These are the
r-limits of integration. They usually depend on the angle # that L makes with the posi-
tive x-axis (Figure 15.24b).

. Find the 8-limits of integration. Find the smallest and largest #-values that bound R.

These are the A-limits of integration (Figure 15.24c). The polar iterated integral is

=2

B=a/2 Lr
[/ fir,) dA = f _ fir,@)rdrdb.
O=xf4 Sr="2cscf

R
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EXAMPLE 1 Find the limits of integration for integrating f(r, &) over the region R
that lies inside the cardioid r = 1 + cos 8 and outside the circle r = 1.

y
t lLeavesatr =2
2 W
R 7
rsinf=y= \,-"E :
DT -I'r '.III
r=v2csch / Enersatr = V2 ese
-"\B
> X
0

(b)

¥

- Largest fis T.

AL
2 / y=x
lﬁz '
2
Vv 7 7
I z"/
—_— o
;’13{;'_,-"* Smallest 8 is T

> X

i

FIGURE 15.24 Finding the limits of
integration in polar coordinates.

Solution

1. We first sketch the region and label the bounding curves (Figure 15.25).

2. Next we find the r-limits of integrafion. A typical ray from the origin enters R where
r = 1 and leaves where r = 1 + cosé.

3. Finally we find the 0-limits of integration. The rays from the origin that intersect R run
from # = —7 /2 to 8 = 7 /2. The integral is

w/2 pl+cosh
/ / f(r, O)r dr db.
—wf2J 1

v
_T %
E_ZH.

r=1+cosf

> X
= | T
I Enters Leaves at
2 at r=1+cosf

r=1
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FIGURE 15.25 Finding the limits of
integration in polar coordinates for the
region in Example 1.



Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A= [[rdrdﬁ.
®

EXAMPLE 2 Find the area enclosed by the lemniscate r* = 4 cos 26.

Solution We graph the lemniscate to determine the limits of integration (Figure 15.26) and
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

w4 o Vdcos 20 TAT 2Tr="/1 cos 28
A= f f rdrdﬁ'=4/ [%] df)

o Jo 0 r=0

w4

/ w4
= f chsﬂﬂcﬂi:ﬂlsinﬁ] = 4, [ |
] 0
¥ Leaves at
+ r =J1.,f4 cos 28

r=0 [

FIGURE 15.26 To integrate over
the shaded region, we mun » from O to
W'd cos 26 and @ from O o /4
(Example 2).

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral Jl_rf g fx. ¥) dx dy into a polar integral has
two steps. First substitute x = rcos # and v = rsin 8, and replace dx dy by r dr df in the
Cartesian integral. Then supply polar limits of integration for the boundary of RE. The Car-
tesian integral then becomes

ﬂf{x,y}aﬁrdy= [/’ﬂrcnsﬂﬁrsinﬁ}rdrdﬂ,
[ o

where & denotes the same region of integration, but now described in polar coordinates.
This is like the substitution method in Chapter 5 except that there are now two variables to
substitute for instead of one. Notice that the area differential dx dy is not replaced by dr df
but by r dr df. A more general discussion of changes of variables (substitutions) in multi-
ple integrals is given in Section 15.8.
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EXAMPLE 3 Evaluate

ﬂ ety dy dx,
[
_ ]

where R is the semicircular region bounded by the x-axis and the curve y = V1 — x
(Figure 15.27).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral
and there is no direct way to integrate e~ with respect to either x or y. Yet this integral
and others like it are important in mathematics—in statistics, for example—and we need

to evaluate it. Polar coordinates make this possible. Substituting x = rcos # and
v = rsin f# and replacing dy dx by r dr dff give

w opl W
/fef—fdydr =ff &r dr db =[ [%f}]dﬂ
e 0J0 0 i}

R N T
—j; (e —1)dd =Z(e— 1).

The r in the rdr df is what allowed us to integrate e . Without it, we would have been
unable to find an antiderivative for the first (innermost) iterated integral. [ |

FIGURE 15.27 The semicircular region
in Example 3 is the region

0=r=1, 0=8=m



to evaluate it. Polar coordinates make this possible. Substituting x = rcos # and
v = rsin 8 and replacing dy dx by r dr dfl give

7 pl w
[/e‘-“-‘:d}‘dr =ff e”rdr df :/ [%e’x}]dﬂ'
o oS0 o o

Y S T,
—fu (e — 1)dd =3(e — 1).

The r in the rdr df is what allowed us to integrate & . Without it, we would have been
unable to find an antiderivative for the first (innermost) iterated integral. [ |

EXAMPLE 4 Evaluate the integral

1 pVI-&
[[Tweraa
oJo

Solution Integration with respect to y gives

1 R
[V + )
0

which is difficult to evaluate without tables. Things go better if we change the original
integral to polar coordinates. The region of integration in Cartesian coordinates is given by
the inequalities 0 = y = %1 — x* and 0 = x = 1, which correspond to the interior of
the unit quarter circle x* + y* = 1 in the first quadrant. (See Figure 15.27, first quadrant.)
Substituting the polar coordinates x = rcosf, y=rsinf, 0 =60 = 7/2, and
0 = r = 1, and replacing dy dx by r dr df in the double integral, we get

1 pVI-22 w2 pl
/[ (x? + ) dydx =f f (r) r dr df
odo o Jo
:fm [ir]dg =fw”zldg _T
0 4] o 4 8

The polar coordinate transformation is effective here because x* + y° simplifies to r* and
the limits of integration become constants. |
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EXAMFLE 5 Find the volume of the solid region bounded above by the paraboloid
z = 9 — x* — y? and below by the unit circle in the xy-plane.

Solution The region of integration R is bounded by the unit circle x> + y* = 1, which
is described in polar coordinates by r = 1,0 = # = 2. The solid region is shown in
Figure 15.28. The volume is given by the double integral

2w pl

./.]- (9 —x* —y*)dA =f (9 —r)rdrdd > =x* % dA = rdrad,
o L]

R
2w pl

=/ (9r — r3) dr df
] L]

FIGURE 15.28 The solid region in
Example 5.
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EXAMPLE 6 Using polar integration, find the area of the region R in the xy-plane
enclosed by the circle x* + y* = 4, above the line y = 1, and below the line y = \/3x.

Solution A sketch of the region R is shown in Figure 15.29. First we note that the line
¥y = V3x has slope V3 = tan @, so f = 7 /3. Next we observe that the line y = 1 inter-
sects the circle x* + y* = 4 when x* + 1 = 4, or x = V3. Moreover, the radial line
from the origin through the point (%3, 1) has slope 1/%'3 = tan 8, giving its angle of
inclination as # = g /6. This information is shown in Figure 15.29.

Now, for the region R, as @ varies from 7 /6 to /3. the polar coordinate r varies from
the horizontal line ¥ = 1 tothe circle x> + y* = 4. Substituting r sin # for y in the equation
for the horizontal line, we have rsin# = 1, or r = csc 8, which is the polar equation of the
line. The polar equation for the circle isr = 2. Soin polar coordinates, for w /6 = 8 = 7/3,
r varies from r = csc # to r = 2. It follows that the iterated inte gral for the area is

/3 a2
/] dA = / / rdr dfl
& /6o csc @

| (dar =\ W= V3
2(6+‘~,3)——3 . |

r=csch }

4
£
T ".

3

|

|
L
L3, 1)
|

|

|

|

EXE

|
1] I 2

FIGURE 15.29 The region R in
Example 6.
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Triple Integrals

DEFINITION The volume of a closed, bounded region D in space is

V=_!/;[/d1f.

Example 1:

J[Jaxdydz =" [° [* " dzdyax

- _r=1:|- - -‘-=D

7 ff—
2

-2 =6
= | (=x%)dy dx

- _:l;'=1:|-..I .1'1

- ,1:=c+|:4_‘)‘:_):'*'T

6
o dX

=7

= __0(2—6J:EJ dx =732

L

Example 2

flﬂj:{x +y+4z)dydxdz =

1 1 "
[ ) =y + 3y + o] dxdz

= f]]j:{zx-i- 2 4 2z) dxdz
= f11 [x2 + 2x + szjh dz

— ‘Jﬂl]{3+12'} dz: [3E+I‘3Jl] — 'ﬁ
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Example 3

Ifj 2x°y%z AV
S

L

r]

0 Jx?

vx

(1 x+y
J f 2x’y®z dz dy dx
0 2 x—y

X
X

i {xayzzz

x+y
} dy dx
X~y

[: Cyl(x + y) - (x — y)]dydx

rx ]
J 4x*y’ dydx = f {x‘y4

] dx

X

0

9 13 117

! 1
=f(x“—x‘2)dx=———=—.l
0
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