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Reinforced Concrete Design I

The aim of this subject is to develop the ability of civil engineering students in analysis and design different
type of reinforced concrete structures expose to different kind of loads ( static and dynamic) using the design
equation depending on the essential principals through understanding the procedures of analysis and design
easily applied for different type of structures

At the end of this course, the student should be able to:

» State the basis of the analysis of the structure,

» State the objectives of the design of reinforced concrete structures,

» State the method of design of concrete structure,

» Express the design loads in terms of characteristic loads in ultimate strength and working stress methods,

» Define the characteristic load,

» Name the different loads, forces and effects to be considered in the design,

» State the basis of determining the combination of different loads acting on the structure

* Design the beam section for flexural and shear.

* Design the one-way slab.

Course I — syllabus

1- Chapter I: Introduction

2- Chapter II: Flexural Analysis Strength of Concrete Sections
3- Chapter I1I: Design of concrete Sections

4- CHAPTER 1V: Design for Shear

5- Chapter V: Deflection and Control of Cracking

6- Chapter VI: Development Length

7- Chapter VII: One-way Slabs
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1. Concrete and Reinforced Concrete

Concrete is a mixture of sand, gravel, crushed rock, or other aggregates held together in a rocklike mass
with a paste of cement and water. Sometimes one or more admixtures are added to change certain
characteristics of the concrete such as its workability, durability, and time of hardening.

As with most rocklike substances, concrete has a high compressive strength and a very low tensile
strength. Reinforced concrete is a combination of concrete and steel wherein the steel reinforcement
provides the tensile strength lacking in the concrete. Steel reinforcing is also capable of resisting
compression forces and is used in columns as well as in other situations.

1.1. Properties of Concrete

Some of properties of concrete are:

1.1.1. Compressive Strength

The compressive strength of concrete is determined by testing to failure at 28-day-old, concrete cylinders or cubs at a
specified rate of loading.

f'c: compressive strength of concrete for cylinders (ACI code)
fcu: compressive strength of concrete for cubs (BS code)
f'c=about 80% fcu
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The stress—strain curves as shown below represent the results obtained from compression tests of sets of 28-
day-old standard cylinders of varying strengths. You should carefully study these curves because they bring
out several significant points:

(a) The curves are roughly straight while the load is increased from zero to about one-third to one-half the
concrete’s ultimate strength.

(b) Beyond this range the behavior of concrete is nonlinear. This lack of linearity of concrete stress—strain
curves at higher stresses causes some problems in the structural analysis of concrete structures because their
behavior is also nonlinear at higher stresses.

(c) particular importance 1s the fact that regardless of strengths, all the concretes reach their ultimate
strengths at strains of about 0.002.

(d) Concrete does not have a definite yield strength; rather, the curves run smoothly on to the point of rupture
at strains of from 0.003 to 0.004. It will be assumed for the purpose of future calculations in this text that
concrete fails at 0.003 (ACI 318M-14 section 22.2.2.1) or write (ACI 22.2.2.1).

(e) Many tests have clearly shown that stress—strain curves of concrete cylinders are almost identical to those
for the compression sides of beams.

(f) It should be further noticed that the weaker grades of concrete are less brittle t r ones—that

-]
-
-

is, they will take larger strains before breaking.
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1.1.2. Tensile Strength of Concrete

Concrete is a brittle material, and it cannot resist the high tensile stresses that are important when
considering cracking, shear, and torsional problems. The low tensile capacity can be attributed to the high
stress concentrations in concrete under load, so that a very high stress is reached in some portions of the
specimen, causing microscopic cracks, while the other parts of the specimen are subjected to low stress.
Direct tension tests are not reliable for predicting the tensile strength of concrete, due to minor
misalignment and stress concentrations in the gripping devices. An indirect tension test is called the
splitting test. In this test, the concrete cylinder is placed with its axis horizontal in a compression testing
machine. The load is applied uniformly along two opposite lines on the surface of the cylinder through two
plywood pads, as shown below. Considering an element on the vertical diameter and at a distance y from
the top fibers, the element is subjected to a compressive stress.

£ = ZP( D? _1>
alD \ v(D—v)

2P
fo=77D

-

and a tensile stress
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1.1.3. Flexural Strength (Modulus of Rupture) of concrete

Experiments on concrete beams have shown that tensile strength in bending is greater than the tensile stress
obtained by direct or splitting tests. Flexural strength is expressed in terms of the modulus of rupture of
concrete (fr), which is the maximum tensile stress in concrete in bending.

The modulus of rupture can be calculated from the flexural formula used for elastic materials,

o=fc=Mc/I, orfr=Mc/I

by testing a plain concrete beam. The beam (150 x 150 x 700 mm), is supported on a (600-mm) span and
loaded to rupture by two loads on either side of the center. A smaller beam of (100 x 100 x 500 mm) on a
(400-mm) span may also be used. The modulus of rupture of concrete ranges between 11 and 23% of the
compressive strength.

The ACI Code, Section 19.2.3.1, prescribes the value of the modulus of rupture as

fr = 0.621/f". (N/mm?)

Head of testing machine
Where the modification factor A for type of concrete ( ACI Table 19.2.4.2
is given as: S Id =1/3
1.0 for normal weight concrete “ SR "
A= 0.85 for sand — light weight concrete T*—*——q
0.75 for All light weight concrete - gpan length = | A
* —
Linear interpolation shall be permitted between 0.85 and 1.0 on the basis of trie fractions, for concrete containing

normal-weight fine aggregate and a blend of lightweight and normal-weight coarse aggregate.
The modulus of rupture as related to the strength obtained from the split test on cylinders may be taken.
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1.1.4. Shear Strength of Concrete

Pure shear is seldom encountered in reinforced concrete members because it is usually accompanied by the action of normal
forces. An element subjected to pure shear breaks transversely into two parts. Therefore, the concrete element must be strong
enough to resist the applied shear forces.

Shear strength may be considered as 20 to 30% greater than the tensile strength of concrete, or about 12% of its compressive
strength. The ACI Code, Section 22.6.6.1, allows a nominal shear stress on plain concrete sections is:

= 0.171/f'. N/mm?

1.1.5. Modulus of Elasticity of Concrete

Concrete has no clear-cut modulus of elasticity. Its value varies with different concrete strengths, concrete age, type of
loading, and the characteristics and proportions of the cement and aggregates. Furthermore, there are several different
definitions of the modulus:

(a) The initial modulus is the slope of the stress—strain diagram at the origin of the curve.

(b) The tangent modulus is the slope of a tangent to the curve at some point along the curve-for instance, at 50% of the
ultimate strength of the concrete.

(c) The slope of a line drawn from the origin to a point on the curve somewhere between 25% and 50% of its ultimate

compressive strength is referred to as a secant modulus.
(d) Another modulus, called the apparent modulus or the long-term modulus,.is determined by’

-

obtained after the load has been applied for a certain length of time. »
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The ACI Code, Section (19.2.2.1.a), gives a simple formula for calculating the modulus of elasticity of normal and
lightweight concrete considering the secant modulus at a level of stress, fc equal to half the specified concrete strength, f°C

E, = 0.043 w'*\/f', N/mm?

where w = unit weight o concrete [between 1400 to 2600 kg/m’] and f’'.= specified
compressive strength of a standard concrete cylinder. For normal-weight concrete. The ACI
Code (19.2.2.1.b) allows the use of :

E. =4700,f'. N/mm?
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1.1.6. Poisson's Ratio
Poisson’s ratio u is the ratio of the transverse to the longitudinal strains under axial stress within the elastic range. This

ratio varies between 0.15 and 0.20 for both normal and lightweight concrete.

1.1.7. Shear Modulus

The modulus of elasticity of concrete in shear ranges from about 0.4 to 0.6 of the corresponding modulus in compression.
From the theory of elasticity, the shear modulus is taken as follows

G, = L
© 201+

1.1.8. Modular Ratio

The modular ratio n is the ratio of the modulus of elasticity of steel to the modulus of elasticity of concrete:
n=Es/Ec

1.1.9. Unit Weight of Concrete
The unit weight, w, of hardened normal concrete ordinarily used in buildings and similar structures depends on the concrete
mix, maximum size and grading of aggregates, water—cement ratio, and strength of concrete. The following values of the
unit weight of concrete may be used:

1 .Unit weight of plain concrete using maximum aggregate size of 3/4 in. (20 mm) varies be
For concrete of strength less than (28 MPa), a value of (2320 kg/m3) can be- g,ed whereas for h
can be assumed to be equal to (2400 kg/m?).
2 .Unit weight of plain concrete of maximum aggregate size of 4 to 6 in.
kg/ms3). An average value of 2500 kg/m?® may be used.

400 kg/m?).

I'50,.mm) varies between (2400 to 2560
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3 .Unit weight of reinforced concrete, using about 0.7 to 1.5% of steel in the concrete section, may be taken
as (2400 kg/m?). For higher percentages of steel, the unit weight, w, can be assumed to be (2500 kg/m?).

4 Unit weight of lightweight concrete used for fireproofing, masonry, or insulation purposes varies between
(320 and 1440 kg/m3). Concrete of upper values of 1440 kg/m?3 or greater may be used for load-bearing
concrete members.

The unit weight of heavy concrete varies between (3200 and 4300 kg/ms3). Heavy concrete made with natural
barite aggregate of 1.5 in. maximum size (38 mm) weighs about (3600 kg/m?). Iron of sand and steel-
punchings aggregate produce a unit weight of (4320 kg/m?).

1.1.10. Volume Changes of Concrete
Shrinkage, Creep, and Expansion Due to Rise in Temperature

1.2. Steel Reinforcement

Reinforcement, usually in the form of steel bars, is placed in the concrete member, mainly in the tension
zone, to resist the tensile forces resulting from external load on the member. Reinforcement 1s also used to
increase the member’s compression resistance. Steel costs more than concrete, but it has a yield strength
about 10 times the compressive strength of concrete.

Longitudinal bars taking either tensile or compression forces in a concrete member are called main
reinforcement. Additional reinforcement in slabs, in a direction perpendicular to the main reinforcement, is
called secondary, or distribution, reinforcement. In reinforced concrete beams, steel

reinforcement is used, transverse to the direction of the main steeland bent in a box or
called stirrups. Similar reinforcements are used in columns, whe ate called ties.

=
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1.2.1.Types of Steel Reinforcement
Different types of steel reinforcement are used in various reinforced concrete members. These types can be classified as
follows:

Round Bars. Round bars are used most widely for reinforced concrete. Round bars are available in a large range of diameters,
from 1/4 in. (6 mm) to 1 3/8 in. (36 mm), plus two special types, 1 3/4in. (45 mm) and 2 1/4in. (57 mm). Round bars,
depending on their surfaces, are either plain or deformed bars. Plain bars are used mainly for secondary reinforcement or in
stirrups and ties. Deformed bars by either the continuous-line system or the number system. In the first system, one
longitudinal line is added to the bar, in addition to the main ribs, to indicate the high-strength_gra si /mm?2),
according to ASTM specification A 617. If only the main ribs are shown on.the bar, without any a
of the ordinary grade according to ASTM A 615 for the structural grade ( si, or 280 N/mm?). In the number
the yield strength of the high-strength grades is marked clearly on every inary grades, no strength marks are
indicated. The two types are shown in Fig. below.
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1.2.2.Stress—Strain Curves of the steel

The most important factor affecting the mechanical properties and stress—strain curve of the steel is its
chemical composition. The introduction of carbon and alloying additives in steel increases its strength but
reduces its ductility.

Commercial steel rarely contains more than 1.2% carbon; the proportion of carbon used in structural steels
varies between 0.2 and 0.3%. Two other properties are of interest in the design of reinforced concrete
structures; the first is the modulus of elasticity, Es. It has been shown that the modulus of elasticity is
constant for all types of steel. The ACI Code has adopted a value of Es =29 x 10 psi (2.0 x 10° MPa). The
modulus of elasticity is the slope of the stress—strain curve in the elastic range up to the proportional limit; Es
=stress/strain. Second is the yield strength, fy.

Typical stress—strain curves for some steel bars are shown in Fig. below. In high-tensile steel, a definite yield
point may not show on the stress—strain curve. In this case, ultimate strength is reached gradually under an
increase of stress (Fig. below). The yield strength or proof stress is considered the stress that leaves a residual
strain of 0.2% on the release of load, or a total strain of 0.5 to 0.6% under load

e
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2. DESIGN PHILOSOPHY AND CONCEPTS

The design of a structure may be regarded as the process of selecting the proper materials and proportioning
the different elements of the structure according to state-of-the-art engineering science and technology.
In order to fulfill its purpose, the structure must meet the conditions of:

safety, serviceability, economy, and functionality.

The ACI Code emphasizes the unified design method (UDM) which based on the strength of structural
members assuming a failure condition, whether due to the crushing of the concrete or to the yield of the
reinforcing steel bars. Although there is some additional strength in the bars after yielding (due to strain
hardening), this additional strength is not considered in the analysis of reinforced concrete members.

In this approach, the actual loads, or working loads, are multiplied by load factors to obtain the factored
design loads. The load factors represent a high percentage of the factor for safety required in the design.

The basic method that is not commonly used (now) is called the working stress design or the elastic design
method. The design concept is based on the elastic theory assuming a straight-line stress distribution along
the depth of the concrete section under service loads. The members are proportiene I ertain
allowable stresses in concrete and steel. The allowable stressesgare. fractions of the ¢
concrete and yield strength of steel. This method has been delete he ACI Code. The application of this
approach is still used in the design of pre-stressed concrete members under service load conditions.
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3. CODES OF PRACTICE

The design engineer is usually guided by specifications called the codes of practice. Engineering specifications are set up
by various organizations to represent the minimum requirements necessary for the safety of the public, although they are
not necessarily for the purpose of restricting engineers.

Most codes specify design loads, allowable stresses, material quality, construction types, and other requirements for
building construction.

The most significant standard for structural concrete design in the United States is the Building Code Requirements for
Structural Concrete,

1- ACI 318, or the ACI Code.

2- International building Code (IBC),

3-The American Society of Civil Engineers standard ASCE 7,

4- The American Association of State Highway and Transportation Officials (AASHTO).

5- American Society for Testing and Materials (ASTM).

6- American Railway Engineering Association (AREA).

7- Iraqi Standards.
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FLEXURAL ANALYSIS OF REINFORCED CONCRETE BEAMS

BEHAVIOR OF SIMPLY SUPPORTED REINFORCED CONCRETE BEAM
LOADED TO FAILURE

BEAM LOADED TO FAILURE

Concrete being weakest in tension, a concrete beam under an assumed working load will
definitely crack at the tension side, and the beam will collapse if tensile reinforcement is not
provided. Concrete cracks occur at a loading stage when its maximum tensile stress reaches
the modulus of rupture of concrete. Therefore, steel bars are used to increase the moment
capacity of the beam; the steel bars resist the tensile force, and the concrete resists the

compressive force.
-]
i > :'l
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Reinforcement

By consider any reinforced concrete beam carry an incrementally accumulative increase load as shown
below.

The beam will pass through three stress stages which are:

Stage 1: Elastic Un-cracked Stage: The applied load on beam less than the load which cause cracking.
Stage 2: Elastic Cracked Stage: The applied load makes the bottom fiber stress equal to modulus of
rupture of concrete fr. Entire concrete section was effective, steel bar at tension side has same strain as
surrounding concrete. At this stage before develop any effective cracks the section is under service
stresses

Stage 3: This stage includes two : (a): Inelastic Cracking Stage : The tensil
exceeds the rupture fr and cracks develop. The neutral axis shifts upward and ¢
axis. Concrete loses tensile strength and steel starts working effectively and resists the entir
load. (b): Ultimate Strength Stage: The reinforcement yields. wed by the failure Stage and the
material stresses will be exceed its corresponding capacity.

he concrete
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TYPES OF FLEXURAL FAILURE

Three types of flexural failure of a structural member can be expected depending on the percentage of
steel used in the section.

1 .Steel may reach its yield strength before the concrete reaches its maximum strength. In this case, the
failure is due to the yielding of steel reaching a high strain equal to or greater than 0.005. The section
contains a relatively small amount of steel and is called a tension-controlled section.

fe<f'c f'c
£¢<0.003 |
[ e D =— S ——

Stress At Failure .
Tension-controlled section. ‘ -
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2 .Steel may reach its yield strength at the same time as concrete reaches its ultimate strength. The section

1s called a Balanced section
f'c
gc=0.003 \

IS | s
N.A

As.

gs=e~fy/Es  fy

_ bw Strain Stress




Prof. Dr. Haleem K. Hussain

3 .Concrete may fail before the yield of steel, due to the presence of a high percentage of steel in the
section. In this case, the concrete strength and its maximum strain of 0.003 are reached, but the steel
stress 1s less than the yield strength, that is, fs is less than fy. The strain in the steel is equal to or less than
0.002. This section is called a compression-controlled section

!

t'e
ec=0.003 \

N.A

As.
i & i s
X - es=gisey= fy/Es ts<ty

. bw 4 Strain Stress -

e
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Analysis and Design Methods of Reinforced Concrete Structure Working Stress
Method (WSM)

Stresses are computed in both the concrete and steel using principles of mechanics that include
consideration of composite behavior

Actual Stresses < Allowable Stresses

Ultimate design method (UDM)

The Strength of members is computed at ultimate capacity Load Factors are applied to the loads Internal
forces are computed from the factored loads

Required Strength < Actual Strength

Working Stress Method (WSM)

Basic assumptions for design applicable to flexural and compression members are as follows:

(1) Plane section before bending remains plane after bending. — 4
) . ; . A WA

(2) The tensile stress of concrete is neglected unless otherwise mentioned. __'i‘_""- %%%A;@

- e )

(3) The strain-stress relation for concrete as well as for steel rein

s e
o e e o i =2 |

(4) Perfect bond between steel and concrete. sl and dalcniad

steel bars
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Loading Stages: Un-cracked section and Cracked section and Permissible Stresses

Load factors for all types of loads are taken to be unity for this design method. Permissible stresses are
defined as characteristic strength divided by factor of safety.

The factor of safety is not unique values either for concrete or for steel; therefore, the permissible stresses

at service load must not exceed the following :

- Flexural Extreme fiber stress in compression : 0.45 f'c

- Tensile stress in reinforcement: 0.5 fy

- Modular Ratio n= Es/Ec

- Transformer section : Substitute steel area with ( n As) of fictitious concrete

- Location of Neutral axis depends on weather we are analyzing or designing a section

s and shears

-

The beam is a structural member used to support the internal mo

-

10
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The stress in the block 1s defined as:
MxXxy
0O = I ( for homogenous section)

Under the action of transverse loads on a beam strains, normal stresses and internal forces
developed on a cross section are as shown below :

1-Stage 1: Before Cracking (Uneconomical).
2- Stage 2: After Cracking (Service Stage).
3- Stage 3: Ultimate (Failure).

12
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1- Un-cracked Section:

Assuming perfect bond between steel and concrete, we have:

E.=E, 1 Y
fo=% fe=nfc -

Tensile Force = As fs = As.nfc 1B O e

As.

Es

1
Y

A=At =A,+nds bw
A, Equivalent Area

Ac: Concrete Area
As: Steel Area
n: Modular Ratio =

Permissible Stress:

As.
c ' 000 =" l n.AS —
Concrete =0.45 f, ' !

Steel= 0. 5f, bw l_bw |

Original Section Equivalent Section

13
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Homogenous section & under bending:

_M.C
fC =3 I
f=nf.
Transformer section:
1—At=(Ac—As)+nA, = Ac+ (n—1)A, = 1 J
A xﬁ+(n—1)A X d s
2 — by =— 2 s g
At
|
- o
b 3 ; - XC.g
1 _ - - r N2 . N2 .

3—1 17 + Ac(y 2) +(n 1)As(d y) >

s
where At =bh+ (n — 1)A, nAg -

. 1
Stress:
M.y
jr — = Top fiber . bw -
M (h—y) , . . | —
f. = R Bottom fiber ‘ Equivalent Section
M. (h — y — cover) _ :

fs =nf, = ; at steel fiber

15




Example (1):

Prof. Dr. Haleem K. Hussain

Determine the crack moment for the section shown below , and the stresses. Es= 200000 Mpa

f'c =28Mpa,fy =413 Mpa,b = 300,h = 600, concrete cover = 50mm ___

Solution:
B M.C
fe = ;

As = 4 X 202 X nn/4 = 1256 mm?
_ bh*/2+ (n—1A.d

!

b.h+ (n—1)A,
n = EC
E. = 4700\/]"' = 4700 X V28 = 24870 MPa
_Es_200000
"TE T 24870
600
(300 X 600 X =) + (8 — 1) X 1256 X (600 — 50)
7 300 x 600 + (8 — 1) x 1256 = 311.63 g
h3 h
I + bh(y' — E)Z + (n—1)A4s(d — y")? -

7~ 12 >
300 x 6003 600_,
=~ +300 x 600(311.63 — ——) + (8 — 1) x 1256(550 ~ 31 -

12
= 59.232 x 108 mm*

e |
: i
§ o
4420mm
00 OC
_ 300mm _
e 7 —
5
o Jy @
% w
3
=
nAYY, //fz?zt—

Equivalent Section
16
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Yiortom = Yp = B —y' = 600 — 311.63 = 288.37 mm
ytop = yt = y’= 311.63 mm
Vsteel = Yp — cover = 288.37 — 50 = 238.37 mm

From ACI code f. = 0.625,/f'c = 0.625v28 = 3.31MPa

ft bottom fiber :
= Mcr X Yb
fCT' B I
gagr
3.31 = M, x 288.37 Mcr = 67.99 x 10 N
°% T 59232 x 108 mmmmp VT T 00 S
or M_.=67.99 KN.m
M. %
f . top fiber = f,, = —2— 2
i
gr
M, x311.63

= 3.58 Mpa < f'c = 28 MPa

59232 x 108 g
e
M. % — cover 6799 x 10°(238.37 ‘
cr (yb ) . 799@ ( )

= = X
fo=nfe=n I, 9.232 X 108
= 21.86 MPa << fy = 413 MPa

17
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2-Cracked Section

f.>fr, fc <0.45f'. and fs < 0.5fy
Assume the crack goes all the way to the N.A and will use the transformed section

- ey
i / | i kd/3
T = '
7/ 1
= N.A jd=(1-k/3) d
n.As 1 !

| = >T

1 B | -

18
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To locate N.A. , tension force = compressive force (by def. NA) (Note, for linear stress distribution and with
Tensile and compressive forces are equal to

kd
C=>b - X f,and T =As X fs

To determine the location of neutral axis, the moment of the tension is about the axis is set equal to the
moment of the compression area, which gives:

kd
b(kd) <7> = nAs (d — kd) second degree equation

As
where rienforcement ratio = p = bd or As = pbd

b(kd) (%) —npbd?(1—k) =0  multiply by ( : )

k? =
<7)=np(1—k)=0

k% + 2npk — 2np + (np)2 — (np)2 =0
(k + 2np)? = (np)*+ 2(np) = 0

Then :

k =/2pn + (pn)2— pn

e

19
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Taking moments about C gives:

M=T.jd =A4sfsjd

where: jd is the internal lever arm between C and T. From the above equation steel stress is

M
~ Asjd

& fs

Or Conversely, taking moment about T gives

kd
M=de=b(2—)fcjd=%kjbd2
. 2M
“IC= ba?

Where :

N
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n = ratio of modulus of elasticity of steel to that of concrete = E—S
C

fc = compressive unit stress on the concrete at the surface most remote
from the neutral surface, in pound per square inch
fs = tensile unit stress in the longitudinal reinforcement, in pound per square inch
b = the width of the rectangular beam, in inches.
d = the ef fective depth of the beam in inches
k = ratio of distance of the neural axis of the cross section, from extreme
fibers in compression to the ef fective depth of the beam
kd = the distance from the neutral axis of the cross section to the extremefibers in compression
J = ratio of the distance between the resultant of the compressive stresses and centre of the
tensile stresses to d,the ef fective depth of the beam
jd = the distance between the resultant of the compressive stresses and the centre of the tensile
stresses. It is the lever arm of the resisting couple, in inches
p = the ratio of the area of the cross section of the longitudinal steel reinforcement

. A
to the ef fective area of the concrete beam, p ﬁ

21
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Example (2):

Determine the stresses in concrete and steel of section ( 300 x 600 mm) as in Exa. (1) subjected to service
moment 100 KN.m and f', = 28 Mpa, fy = 413 Mpa , cover =50 mm , As= 4¢20 mm, Es= 200000 Mpa ,

Solution :

M, = 6799 KN.m ( Example — 1)
While M applied = 100 KN.m > M,
The section is cracked

600

(1-k3)d

k = \/an + (pn)?— pn

> T
Y
44 EZ2508N 0.007612
P= bd~ 300 550 =
n=17.99
k= [2%0.007612 X 7.99 + (0.007612 X 7.99)2— 0.007612 X 7.99
=0.2932
C= kd= 0.2932 x 550 = 161.26mm

bc3 =
I, =——+nAd - c)? - >
300 x 161.263 . 3 E
= +7.99 x 1256 (550 — 161.26)% = 19.359 x 108 mm

3

22
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Steel stress:
M.(d—-c)

lcr

100 x 10% (550 — 161.26)

fsznxfcsznx

Concrete Stress
M.c B 100 x 10° x 161.26

fe= 19.359 x 108

= 8.33 Mpa < 0.45 X 28 = 12.6 Mpa 0.K

cr

23
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Example (3): For the simply supported beam shown reinforced by 4¢ 25 mm bars ( fy = 420 MPa) , the
concrete strength ( f'c = 21 MPa) , evaluate the following :

1- If the span beam = 4 m and dead load = 8 KN/m, live load=10 KN/m check the actual flexural stress in
concrete and steel.

2- The length of the beam span that make the concrete in tension face start to crack.

3- The actual stress in concrete and steel if the span of beam = 7m

WL=10 kN/m I
| g
WD=8 KN/m : 2
§ =
| As.
{ |oooo
" 3150 mm 5
L
e —

24




Prof. Dr. Haleem K. Hussain

Solution : First
Total Load = W = WD+ WL =8+ 10 = 18 kN/m?

WL?> 18 x 42
M = 5 - § - 36 KN /mm?
E, 200000

= =922
E. 4700v21
T X 252
Ap =4 X 7 = 1964 mm?

Assume f; = f,
Transformed section area
= Ac+ (n—1)A, =500 X 350 + (9.22 — 1) X 1964 = 191144.1 mm?

Acx%+(n—1)Asxd 350><500><5;L0+(9.22—1)x1964><420
) — _ — 264.4
Y A, 1911441 mm
1—bh3+A ! h2+( DA, d — y)?
350 x 5003 500\°
= —————+350 X 500 X { 264.4 ——~ +(9:22 — 1) x 1964 X (420 ~ 264.4)*

= 4.076 X 10° mm* e
M.C -

ST o

Compression fiber: .

36 X 10° x 264.4
fe = 4.076 X 109

= 2.33 MPa

25
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Allowable stress in compression = 0.45f",.
F,=0.45 % 21 = 9.45 mPa
% i O.K
For Tension bottom fiber:

M.C 36 x10°x (500 — 264.4)
Je=—= 4.076 X 10°
f, = 0.62y/f'. = 0.62v/21 = 2.84 Mpa

~ fr > f¢ the assumption is correct and the section is not cracked

= 2.08 MPa

o MC o 36X10°x(420-2644)
e = 4.076 x 10° - oerr e
Fy, = 0.5 X fy = 0.5 x 420 = 210 MPa

« fo <F

Second: to make concrete start to crack put the concrete tension stress at the extreme fiber equal to concrete
stress at rupture
(fy = f; = 2.84 mPa)

M..(h—c
fy < Mar= =
M,,.(500 — 264.4) & .
25 4.076 x 10°

M., = 49.12 kN.m

26
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WIL? 18 x L2
MCT = 8 = 8
18 x L2
4912 = ~L=467m
8
) WIL? 18 x 72
Third : M = 3 = 3 = 110.25kN.m

since the moment M = 110.25 kN.m > M. = 49.12 KN.m

k =+/2pn + (pn)2— pn
Ag 1964

P=5d " 350x4z0  OV134

pn = 0.0134 x 9.22 = 0.124

k =+/2x0.124 + (0.124)2 — 0.124 = 0.389
kd = 0.389 x 420 = 163.46 mm

k
j=1- 3= 0.87
jd = 365.54 mm

oM 2 x 110.25 x 106 oss up
Je = 1ibd2 ~ 0.389 x 0.87 x 350 x (420)2 _ * .

. The concrete section is cracked

concrete allowable compression stress F, = 0.45f", = 0.45 X 21 = 9.4{ lnPa 1\

~ f. > f'. the concrete behavior is not in elastic range .

_ M 11025x10°
Js =74~ 1694 x 36582 _ [0>>7mbPa

Allowable steel stress =210 MPa ~ fs > F, the steel stress with in limits ~ (OK) 26
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Strength Design Approach

The analysis and design of a structural member may be regarded as the process of selecting the proper
materials and determining the member dimensions such that the design strength is equal or greater than the
required strength. The required strength is determined by multiplying the actual applied loads, the dead
load, the assumed live load, and other loads, such as wind, seismic, earth pressure, fluid pressure, snow, and
rain loads, by load factors. These loads develop external forces such as bending moments, shear, torsion, or
axial forces, depending on how these loads are applied to the structure.

In proportioning reinforced concrete structural members, three main items can be investigated:
1 .The safety of the structure, which is maintained by providing adequate internal design strength.

2 .Deflection of the structural member under service loads. The maximum value of deflection must be
limited and is usually specified as a factor of the span, to preserve the appearance of the structure.

3 .Control of cracking conditions under service loads. Visible cracks spoil the appearance of the structure
and permit humidity to penetrate the concrete, causing corrosion of steel and consequently weakening the
reinforced concrete member. The ACI Code implicitly limits crack widths to 0.016 in. (0.40 mm) for
interior members and 0.013 in. (0.33 mm) for exterior members. Control of cracking is achieved by
adopting and limiting the spacing of the tension bar.

It is worth mentioning that the strength design approach was first permitted in the United States in 1956 and
in Britain in 1957. The latest ACI Code emphasizes the strength concept based ified strain limits on

steel and concrete that develop tension-controlled, compression controlled, or transii
-

%
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ASSUMPTIONS

Reinforced concrete sections are heterogeneous (nonhomogeneous), because they are made of two different
materials, concrete and steel. Therefore, proportioning structural members by strength design approach is
based on the following assumptions:

l.

Strain in concrete 1s the same as in reinforcing bars at the same level, provided that the bond between the
steel and concrete is adequate.

Strain in concrete is linearly proportional to the distance from the neutral axis.

The modulus of elasticity of all grades of steel is taken as Es = (200,000MPa or N/mm?). The stress in
the elastic range is equal to the strain multiplied by Es.

Plane cross sections continue to be plane after bending.
Tensile strength of concrete is neglected because (a) concrete’s tensile strength is about 10% of its
compressive strength, (b) cracked concrete is assumed to be not effective, and (c) before cracking, the
entire concrete section is effective in resisting the external moment.

The method of elastic analysis, assuming an ideal behavior at all levels of stress, is not valid. At high
stresses, non-elastic behavior is assumed, which is in close agreement with the actual behavior of
concrete and steel.

At failure the maximum strain at the extreme compression fibers is assume
Code provision. = -
For design strength, the shape of the compressive concrefe stress distribution
rectangular, parabolic, or trapezoidal. In this text, a recta&hape will be assumed (ACI Code,

Section 22.2).

al to 0.003 by the ACI
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TYPES OF FLEXURAL FAILURE AND STRAIN LIMITS

Three types of flexural failure of a structural member can be expected depending on the percentage of
steel used as explained before.

It can be assumed that concrete fails in compression when the concrete strain reaches 0.003.A range of
0.0025 to 0.004 has been obtained from tests and the ACI Code, Section 22.2.2.1, assumes a strain of
0.003.

In beams designed as tension-controlled sections, steel yields before the crushing of concrete. Cracks
widen extensively, giving warning before the concrete crushes and the structure collapses. The ACI Code
adopts this type of design. In beams designed as balanced or compression-controlled sections, the
concrete fails suddenly, and the beam collapses immediately without warning. The ACI Code does not
allow this type of design.

Strain Limits for Tension and Tension-Controlled Sections

The design provisions for both reinforced and pre-stressed concrete members are based on the concept of
tension or compression-controlled sections, ACI Code, Section 21.2. Both are defined in terms of net
tensile strain (NTS), (&, ), in the extreme tension steel at nominal strength, exclusive of pre-stress strain.
Moreover, two other conditions may develop: (1) the balanced strain condition and (2) the transition
region condition. These four conditions are defined as follows:
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Compression-controlled sections are those sections in which the net tensile strain, NTS, in the extreme
tension steel at nominal strength is equal to or less than the compression-controlled strain limit at the
time when concrete in compression reaches its assumed strain limit of 0.003,(ec = 0.003). For grade 60
steel, (fy = 420 MPa), the compression-controlled strain limit may be taken as a net strain of 0.002, Fig.

a. This case occurs mainly in columns subjected to axial forces and moments.

Tension-controlled sections are those sections in which the NTS, &t, is equal to or greater than 0.005 just

as the concrete in the compression reaches its assumed strain limit of 0.003, Fig. c.

Sections in which the NTS in the extreme tension steel lies between the compression controlled strain
limit (0.002 for fy = 420 MPa) and the tension-controlled strain limit of 0.005 constitute the transition

region, Fig. b.

The balanced strain condition develops in the section when the tension steel, with the first yield, reaches

te at the

a strain corresponding to its yield strength, fy or es= fy/Es, just as the maximu
-

extreme compression fibers reaches 0.003, Fig. d. x,
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&{‘ = 0-003 ‘E'(_' _ D.GGS EL. e 0-003
Co Cg /
L‘I \ )
I d, )
- - L] -
- - - -
Iy Iy :
i Ep = -F—:?_-, E_,'_.! < £,< 0.005 £, = 0.005
S Cimel £, < 0.002 0.002 < &, < 0.005 &, > 0.005

Strain limit distribution, ¢, >c, > c5: (@) compression-controlled section,
(b) transition region, and (c) tension-controlled section.

e.= 0.003
Ch
_\ﬁ
h d d,
A.‘l
L g L ] - -
L L ] L] L
F,
Ey = E..\
b £, = 0.002 (f, = 60 ksi)

d. Balanced strain section (occurs at first yield or at distance d,).
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In addition to the above four conditions, Section 9.3.3.1 of the ACI Code indicates that the net tensile
strain, &t, at nominal strength, within the transition region, shall not be less than 0.004 for reinforced
concrete flexural members without or with an axial load less than 0.10 f'c Ag, where Ag=gross area of the
concrete section.

Note that d, in Fig. above, is the distance from the extreme concrete compression fiber to the extreme
tension steel, while the effective depth, d, equals the distance from the extreme concrete compression
fiber to the centroid of the tension reinforcement. These cases are summarized in Table below:

Table 1  Strain Limits of Figure above 420MP3
Section Candition Concrete Strain Steel Strain Notes (f, = 60ksi]
Compression controlled 0.003 £ < fIE; g, <0.002

Tension controlled 0.003 g,2> 0.005 g; 2> 0.005
Transition region 0.003 JJE, < €,<0.005 0.002 < g, < 0.005
Balanced strain 0.003 g.=LE, g, =0.002
Transition region (flexure) 0.003 0.004< g, < 0.005 0.04 < g, < 0.005

R
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LOAD FACTORS
For the design of structural members, the factored design load is obtained by multiplying the dead load

by a load factor and the specified live load by another load factor. The magnitude of the load factor must
be adequate to limit the probability of sudden failure and to permit an economical structural design. The
choice of a proper load factor or, in general, a proper factor of safety depends mainly on the importance
of the structure (whether a courthouse or a warehouse), the degree of warning needed prior to collapse,
the importance of each structural member (whether a beam or column), the expectation of overload and
the accuracy of calculations.

Based on historical studies of various structures, experience, and the principles of probability, the ACI
Code adopts a load factor of 1.2 for dead loads and 1.6 for live loads. The dead-load factor load.
Moreover, the choice of factors reflects the degree of the economical design as well as the degree of
safety and serviceability of the structure. It is also based on the fact that the performance of the structure
under actual loads must be satisfactorily within specific limits.

If the required strength is denoted by U (ACI Code, Section 5.3.1), and those due to wind and seismic
forces are W and E, respectively, according to the ACI and ASCE 7-10 Codes (American society of civil

Engineering) , the required strength, U, shall be the most critical of the followinN
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1. In the case of dead, live, and wind loads,

U=14D
U=1.2D+ 1.6L
U=12D+ L.OL+1.0W
U=09D+1.0W

U= 1.2 D+ (1.0L+0.5 W)

2. In the Case of Dead Load , Live and seismic load ( earthquake) forces , E

U=1.2 D+ 1.0L+1.0E
U=0.9 D+ 1.0E

3. For load combination due to roof live load , Lr , rain Load ,R, Snow load ,S, in additional to dead ,
live load , wind , and earthquake load:

U=1.2D+ 1.6L+0.5 (Lror S or R)
U=12D+1.6(LrorSorR)+ (1.0 Lor 0.5 W)
U=12D+1.0W+1.0L+0.5(Lror S or R)
U=12D+1E+10L+02S

4. Where fluid load F is present, it shall be included as follows:
U=14(D+F)

U=12D+1.2F + (L or 0.5 W)+ 1.6(Lr or S or R)
U=12D+12F+1.0W+L+0.5(Lror S orR)
U=12D+12F+1.0E+L+0.28S

U=09 (D+F)+1.0E

10



Prof. Dr. Haleem K. Hussain

STRENGTH REDUCTION FACTOR ¢

The nominal strength of a section, say Mn, for flexural members, calculated in accordance
with the requirements of the ACI Code provisions must be multiplied by the strength
reduction factor, ¢, which is always less than 1. The strength reduction factor has several
purposes:

1 .To allow for the probability of understrength sections due to variations in dimensions,
material properties, and inaccuracies in the design equations.

2 .To reflect the importance of the member in the structure.

3 .To reflect the degree of ductility and required reliability under the applied loads
The ACI Code, Table 21.2.1, specifies the following values to be used

-]
L
b =
-

11
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A higher ¢ factor is used for tension-controlled sections than for compression-controlled sections, because
the latter sections have less ductility and they are more sensitive to variations in concrete strength. Also,
spirally reinforced compression members have a ¢value of 0.75 compared to 0.65 for tied compression
members; this variation reflects the greater ductility behavior of spirally reinforced concrete members under
the applied loads. In the ACI Code provisions, the ¢ factor is based on the behavior of the cross section at
nominal strength, (Pn, Mn), defined in terms of the NTS, €t, in the extreme tensile strains, as given below.
For tension-controlled members,p= 0.9. For compression-controlled members, ¢= 0.75 (with spiral

reinforcement) and ¢= 0.65 for other members.

For tension-controlled sections ¢»=0.9
For Compression -controlled sections

a- with Spiral Reinforcement ¢=0.75

b- other Reinforced member ¢=0.65
For Plain Concrete ¢=0.60
For Shear and Torsion ¢=10.75
For Bearing on Concrete ¢=0.65
For Strut and Tie model ¢=10.75

12
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A higher ¢ factor is used for tension-controlled sections than for compression-controlled sections, because
the latter sections have less ductility and they are more sensitive to variations in concrete strength. Also,
spirally reinforced compression members have a ¢ value of 0.75 compared to 0.65 for tied compression
members; this variation reflects the greater ductility behavior of spirally reinforced concrete members
under the applied loads. In the ACI Code provisions, the ¢ factor is based on the behavior of the cross
section at nominal strength, (Pn, Mn), defined in terms of the NTS, &t, in the extreme tensile strains, as
given in Table 1. For tension-controlled members,¢p= 0.9. For compression-controlled members, ¢= 0.75
(with spiral reinforcement) and ¢= 0.65 for other members.

For the transition region, ¢gmay be determined by linear interpolation between 0.65 (or 0.75) and 0.9.
Figure 3.6a shows the variation of ¢for grade 60 steel ( 420 Mpa) . The linear equations are as follows:

0= 0.75+ (£,-0.002) (50)

0= 0.65+(,~0.002) (2§—0)

For Spiral Members
For Other Members

Alternatively @ may be determined in the transition region , as a function of ( ¢/dt) for grade 60 ( fy

420 Mpa) steel as follows:

L S :

0= 0.75+0.15 (C/dt ; ceesrreveesees HAE SplEaI Members:
- . >

@=0.65+ 0.15 (C/dt Z) For M/le!mbers

13
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¢ A
0.90 A | 0.00
/|
0.82 |
0.75 : C |
s |
0.65
Other |
| S
Compression | Transition | Tension |
Comolioe Kb RAd > Transition | Tension
& = 0.002 g, = 0.005 : controlled
¢ c
£ =0.600 £ = |
d! ' £
: 15 &= 0.004 0.005
Spiral ¢ =0.75 + 0.15 _d 3
C p
. .5 —= 375
Other ¢ = 0.65 + 0.25 |:_d T:| d{ 043 037

(e) (f)
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f'c

o £
£¢=0.003 ===

—_— [ 1 i
/// / ) | [pc
/ N.A C=[11f 'cbe

e ' ' —< -
_g i)

As.

O |— >T=As.fy

£5>=gy
bw Strain Stress
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EQUIVALENT COMPRESSIVE STRESS DISTRIBUTION

The distribution of compressive concrete stresses at failure may be assumed to be a rectangle, trapezoid,
parabola, or any other shape that is in good agreement with test results.

When a beam is about to fail, the steel will yield first if the section is under reinforced, and in this case the
steel is equal to the yield stress. If the section is over reinforced, concrete crushes first and the strain is
assumed to be equal to 0.003, which agrees with many tests of beams and columns. A compressive force, C,
develops in the compression zone and a tension force, T, develops in the tension zone at the level of the
steel bars. The position of force T is known because its line of application coincides with the center of
gravity of the steel bars. The position of compressive force C is not known unless the compressive volume
1s known and its center of gravity is located. If that is done, the moment arm, which is the vertical distance
between C and T, will consequently be known.

In Fig. above, if concrete fails, ¢, = 0.003, and if steel yields, as in the case of a balanced section, fs = fy.
The compression force C is represented by the volume of the stress block, which has the non-uniform shape
of stress over the rectangular hatched area of b*c. This volume may be considered equal to C =b ¢ («, f'c ),
where a, f'c is an assumed average stress of the non-uniform stress block.

The position of compression force C is at a distance z from the top fibers, which can be considered as a
fraction of the distance ¢ (the distance from the top fibers to the neutral axis), can be assumed to be
equal to @, C, where a, <1. The values of @l and a2 have been estimated from maa ' ues

are as follows: “'- 5

16
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a, = 0.72 for f'c < (28MPa); it decreases linearly by 0.04 for every (7MPa) greater than (28 MPa)
a;, =072 — 0.04 X (f'c—28)/7

a, = 0.425 for f'c < (28MPa); it decreases linearly by 0.025 for every (7MPa) greater than (28MPa)
a, = 0.425 — 0.025 X ( f'c —28)/7

The decrease in the value of a1 and a2 is related to the fact that high-strength concretes show more
brittleness than low-strength concretes.

To derive a simple rational approach for calculations of the internal forces of a section, the ACI Code
adopted an equivalent rectangular concrete stress distribution, which was first proposed by C.S. Whitney
and checked by Mattock and others. A concrete stress of 0.85 f'c 1s assumed to be uniformly distributed
over an equivalent compression zone bounded by the edges of the cross section and a line parallel to the
neutral axis at a distance (a=f,c) from the fiber of maximum compressive strain, where c is the distance
between the top of the compressive section and the neutral axis. The fraction £, is 0.85 for concrete
strengths f'c < (28MPa) and is reduced linearly at a rate of 0.05 for each (7MPa) of stress greater than

(28MPa) with a minimum value of 0.65.
- ‘
MS

17
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B, =0.85 — 0.05 ><< .
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Figure 310 Forces in a nonrectangular zection. 19
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SINGLY REINFORCED RECTANGULAR SECTION IN BENDING

The balanced condition is achieved when steel yields at the same time as the concrete fails, and that failure
usually happens suddenly. This implies that the yield strain in the steel is reached (ey =fy/Es) and that the
concrete has reached its maximum strain of 0.003.

The percentage of reinforcement used to produce a balanced condition is called the balanced steel ratio, pb.
This value is equal to the area of steel, As, divided by the effective cross section bd.

i ASbalanced
Pp = bd

Where:
b = width of compression face of member
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement
Two basic equations for the analysis and design of structural members are the two equations of equilibrium
that are valid for any load and any section:
1 .The compression force should be equal to the tension force; otherwise, a section will have linear
displacement plus rotation:
C=T

2 .The internal nominal bending moment, Mn, is equal to either the compressive force, C, multiplied by its

arm or the tension force, T, multiplied by the same arm: - -

M, =Cd —-z) =Td= z)
(Mu = ¢Mn after applying a reduction factor ¢) g{

The use of these equations can be explained by considering the ca a rectangular section with tension
reinforcement. The section may be balanced, under reinforced, or over reinforced, depending on the
percentage of steel reinforcement used. 20
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f

(a) (b) {c)
£.=0.003 £.=0.003 £.=0.003
Co Ca /
CI 3 R
_
d, =%
L ] - L L
- - L] L ]
£, < Ty Ty < g,< 0.005 e. > 0.005
b 'E_'s E-'b e
For f, = 60 ksi £, < 0.002 0.002 < &,< 0.005 £ = 0.005

Strain limit distribution, c¢; > ¢, > c5: (@) compression-controlled section,
(b) transition region, and (c) tension-controlled section.

e, = 0.003
Ch
;ﬁ
h d d,
A.\
L L] - - .
L ] L L] L
F,
E'; = E‘_'
b £, = 0.002 (f, = 60 ksi)

d. Balanced strain section (occurs at first yield or at distance d,).
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Balanced Section

Let us consider the case of a balanced section, which implies that at maximum load the strain in concrete
equals 0.003 and that of steel equals the first yield stress at distance dt divided by the modulus of elasticity
of steel, fy/Es. This case is explained by the following steps.

Step 1. From the strain diagram

& 0.003 C, 0.003
= or =
dt —Cp Cb dt _ Cb )Ec';z

From triangular relationships (where C, 1s ¢ for a balanced section) and by asdding the numerator to the
denominator,

0.003 &

c, 0.003 I i e
F /

t 0.003 +%¥ = /
S o /
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If Es = 200000 Mpa

Then :
C, = 000 dt 1
b \600+fy) T L
—
C=T 085f, ba=Asfy
A
s /. )
0.85f. b

fp,C=a effective depth
While £,= 0.85 when fc’ < 28 MPa

_ A, balanced  As,,

Pp = bd bd
or As,= p,bd.... (3)

Substitute in eq. (2)
0.85f. ba=fyp, XbXxd
_ 0.85f; a 0.85f; (B;0)

Pb="Fyxd  fyxd
Cb from equation (1) then

/ ﬂ o ,_i—-i—% L C=085f"cab
st =AW ¥

o < NA
As.
D N T
— g _9_0_0_ | — bl s |
&,~f/Es
bw
_ 0858, ( 600\ (dt
Po = \600+fy) \ d

23
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While the nominal Moment Mn = C(d — z) = T(d — z) (Where 7 = %)

. Asfy

4T 0857 b

My = C(d- %) =T (d- %) e (5)
Or:

anAsz(d_g)

To get the usable design moment ¢Mn, the previously calculated Mn must be reduced by the capacity
reduction factor:

Afy
PMn = ®Asfy<d— 1-7fc'b>
while pbzl% or As=ppbd then :
oMn = ofy pbd  d - P22
n=0fyp 17 £b

@Mn = ofyp bd? (1 - 2%

Or @Mn =R, bd?

lead to

N _pfy _ Asfy
R"_Q”fy<1 1.7f’>’ T 085 b

(o}
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S _fy _
For more simlified, let m = 085 fo’ then:
1

R, = Opfy 1—5 pm| ......(8)
Then :

B 0.85 £/, 600 dt
P =5 \600+fy) \ @

_ ﬁ( 600 ) (dt
Po=" \Goorry) o) oo 9)

For one steel layer (

d

) =1
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Upper Limit of Steel Percentage

The upper limit ort he maximum steel percentage pmax, that can be used in a singly reinforced concrete
section in bending is based on then net tensile strain in the tension steel, the balanced steel ratio, and the
grade of steel used. The relationship between the steel percentage p in the section and the net tensile
strain ¢, ,1s as follows:

0.003 + ];_y
z = 5 — 0.003
b
For fy =420 MPa andj;—y = 0.002 then 1!,85 f'ﬁ
0.005 ’ c=0.003 c=0.003
A= e |5 0.003 ] — <
£ —
P o s 3| [e—C=085f"ca,b
These expressions are obtained by

referring to Figure shown. For a - ? M
balanced section, ©

ap Asp. fy pyfyd As.
= — =] —
P78, T 085f/bpB, 085f B ! l —|—o0—0—0-|— | ¥ __:"T Asfy

b &t gy~ fy/Es

Similarly for any steel Ratio p: , W O T

d & - >
B/ ] T
0.85 1, p1 cp, Pp

26
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Divide both sides by d to get:
c p ¢
—=— X— i nn (1
e (10)

From the triangles of the strain diagrams,

c 0.003

d_ 0003+ ¢

0.003
& = [—p—)|—0.003 .......(11)

d

Similarly:
Ch 0.003

4~ 0003 % fy/Es T (12)

Substitute in eq. (10)

c_ (P a P 0.003
~= <pb>(d) (pb) (0.003 +]];_y> N ¢ )

S

Substitute in eq. (11)

0.003 0.003 + Q

Es
g = —0.003 =
LT oc/d p

Pb 27

— 0.003
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fy
il e (14)
pp 0.003 + &
(0.003 + 7Ef—y>

p = > | py

0.003 + ¢,
For fy = 420 ,Es = 200 GPa,  fy/E.= 0.002
p _ 0.0051
pp, 0.003+¢

The limit for tension to control is et = 0.005 according to ACI.For & = 0.005, becomes:
p _0.0051 51

— = = = 0.6375
pp 0.008 8
p < 0.6375 py Tension Control
For design purpose £,=0.005 and :
P =< Pmaxand ¢ = 0.9 fy
0.003 + =
pmax 0.008

2

28

Subistitute p,( Eq.9) gives:

_3hi (%
Pmax =g =\ | e
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When p > p,a  section will be in transition state
then ¢ will be between 0.65 and 0.9

Previously :
¢Mn = Rubd? or Mn= R, bd?
pfy
R, = 1-—
u ¢pfy< 17 fé)
L,
0.85 f,
1

Then : R, = Q)pfy(l— Epm)

d
For one steel layer (d—) =1, fy =420 MPa, f,=28 MPa, ..... And m=17.65
t

Po = % (6060(1-0fy) (dc: )

0.85 600
Pb = 1765 <600 n 420) (1) = 0.0283
(0.003 + 7];—3’> ~
Pmax =\""goog _/Pb e .. (15) i -
(0.003 + %) o
N 0.008 p, = 0.6375p, = 0.6375 x 0.0283 = 0.01806
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1
Ru max — ®pmafo< 1- E Pmax m)

1
Ru . = 0.9 (0.01806) X 420 ( 1- - (0.01806 X 17.65))
Ru,, =574

That’s mean when p > p0 €:<0.005
and ACI cod 9.3.3.1 limited that should be not less than 0.004 in transition region

To keep enough ductility for beam when &, = 0.004

fy
p _ 0003 +5
pp  0.003 + ¢,

p _ 0.003+ 0.0021

o, 0.003 + 0.004
Then p =0.729p,

maxt

And @ calculated from
@t =065+ (g — 0.002) (250) and when £,0.004

30
0.817<0<0.9 and
0.004 <& <0.005

S
3 -—
gl

30
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pp=0.0283 , fy =420 MPa, f/=28 MPa, .....and m=17.65
p. . =0.729 *p,=0.0206

1
Rumax’t — Q)pmax’tfy( 1- E pmax'tm>

Rn .. ,=0.0206 x 420 (1—0.5 x0.0206 x 17.65) = 7.08

Ru = 0.812 x 7.08 = 5.75

max t —

This value is very close from Ru ., so increase the steel over the max ratio at the transition region
does not increased effectively section capacity so its preferable to add steel at compression zone instead
of overthe p_ .. +

31
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Example (1) : For the section shown below , calculate :

a- The balanced steel ratio.

b- The maximum reinforcement area allowed by ACI Code for a tension — controlled section and transition
region.

c- The position of the Neutral axis and the depth of the equivalent compressive stress block for the tension —
controlled section in b.

Given : f; =28 MPa, fy =420 MPa, 0.85f'c
Solution __ |
ﬁl 600 dt i | i i < %
B ) ) 701 T B
“ -
OE __ﬂ__ﬁ;__‘_____ 3
B,=0.85 for f/ <28 Mpa S 9 _
d. =d dt 1 A
g @ =Rt — S. L T=
d l— 1600 S 5T ASfy
fy 420
m = = = 17.65
0.85f  0.85 x 28 .
_ 085 (000 )y 0283 T
Pb = 1765\600 +420) 7 ~ .

Ay, = p, X b xd=0.0283 x 650 X400 = 7358 mm?
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b) &=0.005 for tension control

(0'003 i %) <0'003 + 204020000>
. _ x 0.0283 = 0.01804
P 0.008 /Pr 0.008

As .. = p..X b xd=0.018043 X 650 X 400 = 4690.4 mm?

For Transition region, &= 0.004
(0'003 + %) (0'003 + 204020000>
- - % 0.0283 = 0.021
o 0.007 /Pp 0.007 YAVAAER) = VL

ASmaxe = 0.0219 X 400 X 650 = 5694 mm?
250 250
Ot = 0.65 + (g, — 0.002) ( —— | = 0.65 + (0.004 — 0.002) -] = 0.817

¢) Block stress depth (7ension controlled)
C=T

0.85 f, X Qmax X b = Ag max [V - -
As.fy d - =
Amax = W E = Pmax M- d i = >

a,.. =001804 X 17.65 X 650 = 206.96mm

a 206.96

or cmax = lelax =<5 = 243.48 mm
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Block stress depth at Transition zone

As.fy d
q =

— bl _ d
085 f‘cl b d pmax,tm

= 0.0219 x 17.65 X 650 = 251.25mm

a max t —
Or:

a, ... 251.25
¢ = = = 295.6 mm

B, 0.85
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Example (2) : Determine the design moment strength and the position of the neutral axis of the rectangular
section shown below , if the reinforcement used is 40 25 mm , Given : f’c = 28 Mpa, fy =420 Mpa,

Solution:

(0858
g
25 2 3l
As =40 25mm = 4 x 25% X i 1960 mm S / o ® <L (C=085f'cbey
JAs_ 1960 oo LA Ve — W]
P~ bd ~ 300x540 | - = I R
3 i °
P < Prax = (0.018040 from Exa.1) OK As,
Tension Control A e }T=é§£)’_
-~ 0=0.9
C=T L300

085f, XxXaxb=Asfy
0.85 % 28 a x 300 = 1960 x 420
a=115.29mm  Or a = pm.d=0.012098 X 17.65 X 540 = 115.29 mm

_a 11529
=5 085 .64mm

(B=0.85 for f; <=28 Mpa)

dt = d (one layer)
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d—C 540 — 135.64

X &£ = % 0.003 = 0.00894 > 0.005 OK
& 135.64

Iension failure so ¢=0.9

OMn =Mu=0@T (d—%)=®Asfy (d—g)

115.29
= 0.9 x 1960 x 420 x (540 -— ) = 357.37 x 10N.mm = 357.37 KN.m
Example (3) : Repeat Example (2) Using As = 4@ 32 mm (HW)

36




Prof. Dr. Haleem K. Hussain

Lower limit or Minimum Percentage of Steel
If the factored moment applied on a beam is very small and the dimensions of the section are specified (as is

sometimes required architecturally) and are larger than needed to resist the factored moment , the calculation
may show that very small or no steel reinforcement is required. In this case, the maximum tensile stress due
to bending moment may be equal to or less than the modulus of rupture of concrete fr. If no reinforcement is
provided, sudden failure will be expected when the first crack occurs, thus giving now warning. The ACI
Code, Section 9.6.1, specifies a minimum steel area, As

min °

A 0.25 C d><—1')b d h '=31M
S i = bw.d > w.d.... ... .whenf, = pa
fy fy ¢

= {(—1 > F < 31 Mp
D min TR 2o T Ol | a
Iy i

0.25 fc ey
min — e e e WEN > _ =
R o
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Example (3) : A 2.5 m Span cantilever beam has a rectangular section and reinforced as shown below ,
The beam carries a dead load , including its self weight of 22 KN/m and a live load of 13 KN/m , using
f:=28 MPa, fy = 420 MPa. Check if the beam is safe to carry above load.

400mm

—‘— O O O ‘
As =3¢ 22 mm
! !
200

Solution:

1- External Load

ANNNNNNNN\N

L=25m

T

Wu=12D.L+ 1.6 L.L= 12 X 22+ 1.6 X 13 = 472KN/m

_ Wul?  47.2 x 2.52

N
2

2

2- Check &  As 022= 380 mm?

As.fy  3x380 x420

a=

~ 085f/b 0.850 x 28 x 200

a
c=——=118.35mm

0.85

= 147.5 KN.m

= 100.6 mm

S
3 -—
gl

38




Prof. Dr. Haleem K. Hussain

d, = d = 400 mm, ¢$=0.9

B dt — c
& = . &
(400 —118.35
gt ==

118.35

Or check
As 3 X 380

P =34 ~ 200 x 400

) x 0.003 = 0.00714 > 0.005 (&,)

= 0.01425 < p,, . = 0.01804

3- calculate :

OMn = QAs fy (d — E)

2
OMn = 0.9 X 3 x 380 X 420 X (400 — %) = 150.69KN.m

Other Solution
p=0.01425<p,, = 0.01804
420
v = 17.65
0.85f, 0.85x 28

1
R = pfy (1—Epm> - =
= 0.01425 x 420 (1 — 0.5 X 0.01425 x 17.65) = 5.23 N/mmz_i' e \

®Mn = @R b d?
= 0.9 X 5.23 x 200 X 4002 = 150.69 KN.m

m =
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Example (4) : A simply supported beam have a span of 6 m . If the cross section is shown below , f/=21 MPa, fy = 420
MPa determine the allowable uninform load live load on the beam assuming the dead load is due to self weight of the beam ,
given b= 300 mm, h= 500 and reinforced with 5@ 20 mm ( 1570 mm?2).

Solution |

Find the centroid of steel area
RS 50( Asb) + 2 x 75(Asb) As 56 20 mm
y — —

SX(ASb) ] ! o 9 Q L 6m _
-— | 0o 0 O s I 1

¥
i

d, = h — 50 = 500 — 50 = 450mm

300
d=h—-y" =500—-60=440 mm - ™
CB1[ 600 \[dt
Po =\ 600 + )\ d
Sy %20 353 g =085 (fi< 28 MP
M= 085f 085x21 Pr=085(f 2 O O
- -
085 (600 450\ _ oo O ~ | O |
Pb = 17.65\600 + 420/ \440) ~ > 2

0.003 + Iy
pmax =

ES) 0, = 0.6375 p, = 0.01385

0.003 + €t 40
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_(As\ 2 (231 N _ 01189 < k (6=09
P=\ba) " \300 x 240) = Prax Ok (0=09)

= = 0.003 < p=0.01189 OK

Pmin < P < Pmax

®Mn = @R b d?

R =pfy (1 —%pm)

= 0.01189 x 420 (1 — % X 0.01189 x 23.53) = 4.295 MPa

OMn = 0.9 X 4.295 x 300 X 4402 = 224.52 KN.m

Self weight of beam = 0.3 X 0.5%X1X24=3.6KN/m

3.6 X 62
Mp, = ~—— =162 KN.m

Mu= 12MDL + 1.6 MLL

22452 =12x162+1.6x M, = 128.175
W, x 62

&
M, = 128175 = —— |

W,, = 2848 KN/m .
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H.W

Example (5) : Check the design Adequacy of section below, factored moment Mu= 50 kN.m
, using, f/=25 MPa, fy =280 MPa
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Example (6) :Determine the design moment strength of section shown below , Given f’c=28 mPa and fy=420
MPa and check the specification of the section according to ACI Code.

Solution:
52

As =3 X nT = 1470 mm?

_ As _ As
2 effective area  bd — 150 x 100

AS | 75 150 | TS

~ 300 x 500 — 150 x 100 |
Effective area = 300 x 500 — 100 X 150 = 135000 mm? : ; —

= 170 501089 8 —:"I B
P = 135000 Y / S
pbzﬁl S0 @ Vs ///. L FTS = 5

m \ 600+ fy/)\ d E

dt = d=500 mm 2| 8

_ VPSR | KL = 17.65 i
M= 085fc 085 x 28

0.85 600 5 As 3 925 &
— x 17.65 = 0.02 ST O
Pb = 1765 (600 + 420> 65 =0.0283 t 3
i (0-005ggealie80ilD x 0.0283 = 0.018041 300mm

Prmax 0.003 + 0.005 ' - - "
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: 1.4
( ) = (ﬁ) = 0.00333 (where f'c < 31MPa
i = 0.00333 < p =0.01089 < p,,,, = 0.01804 y” 13 g 150 * 13
Tension Controlled © = 0.9 NN
Assume stress block depth = a = 100 mm 2 , ’%I B
Compressionarea A, = a X b — 100 X 150 ZV /// ) §
C=T 7
0.85fcAc = Asfy E o
]
_(1470x420\ o A ¥
c~\085%x28 )~ i
A.=axb—100x 150 = a x 300 — 150 x 100 : A;4<I%5 .
a = 136.47mm > 100mm LR
N\
300 x 136.47 X (133'47) — 150 x 100 x (@) 300mm |
y' = = 78.78 mm /

300 x 136.47 — 150 x 100
The Moment Arm between C and T is :

d—y' =500—78.78 = 421.22 mm

OMn = @Asfy (d —y’)
= 0.9 x (1470 X 420 X (500 — 78.78) = 234.06 KN.m
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Rectangular section with compression
reinforcement (Double Reinforced section )
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Introduction

In concrete sections proportioned to resist the bending moments resulting from external loading on a structural
member, the internal moment is equal to or greater than the external moment, but a concrete section of a given width
and effective depth has a minimum capacity when g, 1s used. If the external factored moment is greater than the
design moment strength, more compressive and tensile reinforcement must be added.

Compression reinforcement is used when a section is limited to specific dimensions due to architectural reasons,
such as a need for limited headroom in multistory buildings. Another advantage of compression reinforcement is that
long-time deflection is reduced. A third use of bars in the compression zone is to hold stirrups, which are used to
resist shear forces.

Two cases of doubly reinforced concrete sections will be considered, depending on whether compression steel yields
or does not yield.
1- When Compression Steel Yields

Internal moment can be divided into two moments, as shown in Fig. below. Let Mu, be the moment produced
by the concrete compressive force and an equivalent tension force in steel, As,, acting as a basic section.
Then Mu, is the additional moment produced by the compressive force in compression steel A s’ and the
tension force in the additional tensile steel, As,, acting as a steel section.

The moment M, is that of a singly reinforced concrete basic section,
T,=Cc
As.fy =085f/ ba

s As fy 3
085f. b -

OMn = QAsfy (d — g)
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l

/

58 1 — L G g
/ 2 e 7 -~

(ASTTAIAT S EA i—_NA— N

3
=]
As.
- 000+ — — — — ————>T=As.fy
b | l
Il
|0.85 f'c
- I A A | S - AP Wy Wy
° . ° Gl T = S| Ce=085fcab S~ [ =
A N.A =
-
3 A
=
" ==
e 000]— — — — - 5. Ti=As, fy o—+——>T-As, fy
b
47




oM, = As,fy(d —3)
OM, = PAs,fy(d — d')

Prof. Dr. Haleem K. Hussain

PL="= less or equal p ... for singlreinforcement section under tension control

And

fs' = fy then

OM, = BAs,fy(d — d")
Or:
T,=Cs

As,.fy = As'fy As' = As,

OMn = QMn ,+ QMn,

As = As, + As, As, = As — As'
——

8 Asify _ (As — As"fy
0.85f'ch  0.85f'ch

oMn = 0 [(4s - As') x fy (d — g) +As'fy(d - d)]

_,_ _(0003+fy/Es
pl_p P = pmax_ 0003+€t b

e .

48
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and when p ,=p —p' < p,... ; then the failure case will be at transiton region
And @ will be less than 0.9 for M,; and @ = 0.9 for M, , so:

¢Mn=[wﬂs—Ay)xnyf—%)+am%7w(d—dq]

Noted that: (As — As)<p,...: 0 d
In the compression zone, the force in the compression steel is Cs = A’s(fy — 0.85f'c) ,taking into account
the area of concrete displaced by A's. In this case,

=
As fy =C. + C;
As fy =085f/ ab+ As'(fy — 0.85 )
As fy —As'fy +0.85 f/As' =085 f ab where C. = As,fy = 0.85 f.a b (for the basic section)
Divided by (b d) fy :

p—p’<1—085£>=p where : p <<ﬂ)

T fy ! )

Therefore,

1 0.003 + fy/Es <= .
=p—p'(1-0852)< =
pl :0 ,0 ( fy = pmax - 1:-0008

-

This Eq. 1s more accurate than previous Eq.it is quite practical to use both equations to check the condition
for maximum steel ratio in rectangular sections when compression steel yields. 49




Prof. Dr. Haleem K. Hussain

The maximum total tensile steel ratio, p ,that can be used in a rectangular section when compression steel

yields is as follows:
!

M ax p — p max +p
where p max 1s maximum tensile steel ratio for the basic singly reinforced tension controlled concrete
section. This means that maximum total tensile steel area that can be used in a rectangular section when

compression steel yield is as follows:
Max As =bd (P + £')

In the preceding equations, it is assumed that compression steel yields. To investigate this condition, refer
to the strain diagram in Fig. Below. If compression steel yields, then :

Eg = & = —
C 0.003 600
600 — fy

" 0.003 — fy

50
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ec—=0.003
o o Es /

As'. &) /

gs > fy/Es

d!

d
2
>

as known:
As, fy =085f'cab
As,=As—As and p,=p—p’

51
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(As—As")fy =0.85f,/ab devided by (bd)
(p—pDfy=085f ab

, f
p—p = 0.855(3)

600 ,
L e 2\ /(d 600
s ’)’1(5)(?)(—600—@)

L _Bid (600
P=P ="0d \600— fy

where : ‘ . =
7 : : : . . mdsr  (As-4sh)
p — p 1is the steel ratio for the single reinforced basic section = - B

-

52
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Example (7) : A rectangular beam section have a width of 300 mm, and an effective depth d = 570 mm
to centroid of tension steel . Tension steel consist of 6@ 28 mm in two layers. Compression
reinforcement consist of 20 22 mm, and d’ = 50 mm as shown below . Calculate the design moment
strength of the beam , Given /=28 MPa and fy = 420 MPa.

085 f'e
A " £c=0.003 .
r T;JI o 0 0 | I & / S cer — @ — Cs= As'f§
w02 ° o™ < RCc=0.85Tcab o~ |
E % » - = %
i) L N.A %l' .
o
o 6?)28 o
= = gy == . =
: A‘———%—e—o—tQT > T=As fy - —o——> T,=As,fy
(o)) o
300mm | |
.
o

53
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Solution : Check if the compression steel yields :

A <6 X 282 x %)
=(—=)= = 0.02158
P <bd) 300 X 570

As’ <2 X 222 X %)
=== = 0.00444
P (bd ) 300 X 570

1- Check
- (B1d’ 600
p—p =
md ) \600 — fy
fy 420

A1 M =085 ~ 0.85x 28
0.01714 > - Ch 600 = 0.01408

' —\17.65x570/\600 — 420/

Then: fs'=fy (0.K.)
2— Check p—p' < poox

_B1{ 600 \[dt\ 085 ( 600 600\ _ o o -
Po = T\ 600 + fy)\'d ) ~ 17.65\600 + 420/ \570) ~ " 7° O Pmax T

0.003 + LY 0.003 + oD 5> =
0. = Es o = 200000 | _ 637508 T
™ \0.003+ et/ "\ 0.003 + 0.005 | : a
p—p =0.01714 < p,,,,=0.0190
Tension Controlled -Section so: ¢ =0.9 54
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3- Calculate ¢ Mn
OMn = 0 [(As — As") % fy (d - g) +As'fy(d - d)]
As,fy  (As—As)fy (3690 —760) x 420

_ - - =172.35
“=085fch  085fch 0.85 x 28 x 300 mm
@Mn = 0.9 [(3690 —760) x 420 X (570 - %) +760 x 420 X (570 — 50)] = 685.3 kN.m
4- Another way to check the yield in compression steel £.=0.003
MO ot ! a &'
C_ﬁ1_ 085 .76 mm r\E w S
(o]
<o
es’ _c— d T
EC i C O
20276 =50 003 = 0.00226 > £, = 0.002 B e
& TV TR = =
5- Check ¢,
_ (%) 80020276 003 = 0.005877 > 0:005
A &= 720276 TS = s
6- Check The Maximum Tension steel Area for this section : Es

Max As = (p,,.. + p') bd = (0.0190 + 0.00444) x 300 x 570 = 4008 mmn?
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Rectangular section with compression
reinforcement (Double Reinforced section-II )

S
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Steel Compression Dose Not Yidd (f. < fy)

As was explained earlier, if the formula not checked,

(B 600
p—p = md ) \800=fy)

Then compression steel does not yield. This indicates that if p — p’ is greater than the value of the right-hand
side 1n above eq., So the solution can be done depend on static analysis . The stress in compression steel can
be calculated in two method :

1- From Internal Forces Balance

2- direct method

3- indirect method ( Iterative method)

2- direct method

Aa?—Ba—C=0

A=1,
| d( 600 )
=-m p——
fy
L
=—f(,m
fy ! P
a=1[B+\/BZ+4AC] and C=—
2 B4
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Then Stress can be calculated :

!

fs' =600 (c ) < fy

2- indirect method ( Iterative method)

claculate (a) value for double reinforced section ( DRRS):
PAs fy SEEE

0.85f'ch asstiic gl
find a and c=a/B;
f'si =600 (C_Cd’) < fy, Compare this value f'si with first one (f's)

If its not same then re-calculate (a) using f'si and continue until obtain approximately equal f's in
last two step. After obtain f's then can calculate the Cs and Cc

Cc=As fy—A'sfs' where: Cs =A's fs'

oMn = 9 [cc (d —%) +Cs(d—d)]
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Whenf's < fy
then the maximum steel area in tension zone for rectangular section can be found

IS
Max As = (pxbd+ A's —

fy
J 1 fs'
- (pmax+p fy)bd
max As fs’

< +p'—
bd - max p

fy

!

_ IS
(o—p fy)Spmax

0 mae- Maximum steel ratio for single beam section under tension controlled

_Asfy—A'sfs’
~ 0.85f'ch
And : OMn = @ [(Asfy — As'fs") (d - g) +.As'fs' (d —d")
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Example (8) : Determine the design moment strength of the section shown below , using f’c= 35 Mpa , fy =
420 Mpa. As = 60 32 mm (two layer )and A's = 3@ 25 mm.

SZO(IIU'? Orll d n £c=0.003
-Calculate p and p’ v L W - N &~
p= (AS> = O X8 02418 i 325, 5%—— . Gggﬂsmﬁ 9O Asfs
bd ] ~ 350 x 570 ol o | )
,_(As\_ 3x49%0 _ o % -sr T ¥
p_<bd)_350x570_0'00 368 4 3 g v
m = Iy = 14.12 06?)320 £y
I 0IG5] A JTa-Te-0 01 < ——— >T=As Y o> T=As fy
f1 = 0.8 for f’c =35 mPa % ‘:L
(1 600
-7 (5) @i=r) | s

— 0.02417 — 0.007368 > [28%6> |\ (600 \_ 016812 < 00215 oo T
e ' =\1212x570) "\600—420/) ~ iy (not chegeed)

fs'<fy

_B1( 600 \[dr\ 08 600 e
Po = T\ 600 + fy)\'d ) ~ 1412\ 600 + 420 570
>< 0. 0350;“0 0224

(0.003 + fy/Es) . (0 003 + 420/200000
pmax =i -

0.003 + et 0.003 + 0.005
62




Prof. Dr. Haleem K. Hussain

S0 <3 Tension controlled $=0.9
3- calculate @Mn (internal section analysis)
Cc=085f'cab a=£,XC=08C

Cc=0.85 x35 x(08C)x350=8330C N
Cs=A's(fs" —0.85f'c)

c—d’ c — 65
fs’=600< )=600( >
c c

c— 65
Therefore : (s = 1470 X (600 X ( . > — 0.85 x 35)

c — 65

C

T=T,+T,=(As;+A4s,)fy=As X fy =6 x 804 x 420 = 2026080 N
4- Internal Forces
T =Cc+Cs

c— 65 : .
2026082 = 8330 C + 882000 X ( - ) — 43732.5 ‘__\
S
2026080C = 8330C? + 882000 C — 65 x 882000 — 43732&

8330C2 — 1187812.5 C — 57330000 = 0

= 882000 ( ) — 43732.5

C=180.68 mm
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a:,leC:O.8><180.68

Or

2- Using Direct Method
Aa?— Ba—C=0

A=1,
. d( 600 )
=-m e —
* " Fy
Czﬂﬂlmdd’ '
F .
azz[B+\/B2+4AC]
1 600 , 600 ,\1% 600 . _a
a= E[(md(p—ﬁp)>+\/[md(p—ﬁp)] + 4 xl.OxF,Blmddp ], C_E

0.007368 :
* 0.007 + 4 %
420

600 0.007368 | | + [|14.12 570 | 0.02418 600
* * —
20 ' ' 420

. :
a ) and c¢=—=176.39mm
B4

N =

[(14.12 * 570 (0.02418 3

* 0.8 x 14.12 * 570 * 65 * 0.007368) ]
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Or Using
3-Indirect Method ( iterative method ) both method dose not subtract the term ( 0.85 f’¢)
-Calculate (a)
As fy —A's fs'
— h / —
0.85f'ch where fs° = [y

_ 4824 x 420 — 1470 x 420 — 13599
=T 085 x35x350 e

_a 13529 e
¥ 21 I

s = 600 c—d' ¢ 169.11 — 65 e
/Sy I 169.11 ) 0P

_ 4824 X420~ 1470x 36933
“ 0.85 X 35 x 350 - resmmm

_a _l24
“Tp1” os _ormm

s = 600 S2L) = 600 (LB2E=65) _ 31 yp
el c )~ 178.04 ) ¢

_ 4824 x 420 — 1470 x 381

9 085 x35x350 L4079 mm B
_a _14079" -
‘=B " o0 _°mm % »

-

!

c—d 176 — 65 ;
f's = 600 - = 600 T804 ) = 378.4 MPa almost last two value are equal
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4824 X 420 — 1470 x 378

085 x35x350  _ [l.elmm
_a_wwm2a_
‘T T o0g _o0mm

5- Calculate fs’, Cc and Cs
s = 600 (=) = 600 (1762 = 65\ _ 3791 mp
B c ) VoS

Cc=0.85x 35 x (0.8C) %350 =8330C =8330x 176.5 = 1470245 N
Cs=A's (fs'" —0.85f'c) =1470(379.1 — 0.85 x 35) = 513544 N

6- Calculate Q Mn

141.21
2

66

oMn = ¢ |cc(d —3) + Cs(d — d")| = 0.9]1470245 (570 — *222) + 513544( 570 — 65))]

= 894222 065 N.m
= 894.22 KN.m
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7- Check that p — p’ % = (Do

37
0.02418 — 0.007368 X <

20 ) = 0.01753 < p,,,, = 0.02236 (0.K.)

The maximum total tension steel can be used in this is calculated by :

Max A < + ’fS,>bd
ax AS = i &
P o'

37
= <0.02236 + 0.007368 X

X X = 2
420) 350 X 570 = 5787 mm

8- Let Check et as follow:
C = 176.5mm , d, = 600 mm

dt —c 600 — 176.5 : . E
g, = (———] %0003 = ——-——=100072>0.005 -0.K tension co@%
. ‘i' .
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ANALYSIS OF T-AND I-SECTIONS

It is normal to cast concrete slabs and beams together, producing a monolithic structure. Slabs have
smaller thicknesses than beams. Under bending stresses, those parts of the slab on either side of the
beam will be subjected to compressive stresses, depending on the position of these parts relative to
the top fibers and relative to their distances from the beam. The part of the slab acting with the beam
is called the flange, and it is indicated in Fig. below a by area b*h;. The rest of the section confining
the area (h—hy) b,, is called the stem, or web.

In an I-section there are two flanges, a compression flange, which is actually effective, and a tension
flange, which is ineffective because it lies below the neutral axis and is thus neglected completely.
Therefore, the analysis and design of an I-beam is similar to that of a T-beam.

Floor systems with slabs and
beams are placed in monolithic
pour.
Slab acts as a top flange to the
beam;

1- T-beams

2- Inverted L (Spandrel) Beams.
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Positive and Negative Moment Regions in a T-beam

) I cks
Web or stem Cra
A

(a) Deflected beam.

b b
I T
| o-r01.. |£ii¢/A/ii]
Compression zone Tension reinforcement —_
T—
— b -

(b) Section A-A (c) Section B-B (d) Section A-A

(rectangular (negative moment). (T-shaped

compression zone). compression zone).
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If the neutral axis falls within the slab depth

analyze the beam as a rectangular beam,
otherwise as a T-beam.

Prof. Dr. Haleem K. Hussain

(@)

= —b o {
i T ¢
‘ )
[
h g
A,
¥ —"——1"'-".'-'-
1, —i

_ o= ‘bw
A, {
o & - I
t
— S o J——
(b)
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Effective width (b,)

b, 1s width that is stressed uniformly to give the same compression force actually

developed in compression zone of width b,

4—bw+
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I-From ACI 318, 2014 Section 6.3.2.1
T Beam Flange:
be < x

€=13

be <16 h, + bw
be < b ( clear distance to next web)

2-From ACI 318 2014 Section 6.3.2.1

Inverted L Shape Flange
L
e
be < 17 + bw
be < 6 hy + bw
be < b = bw + 0.5 X ( clear distance to next web)

3-From ACI 318 2014 Section 6.3.2.2

Isolated T-Beams
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The analysis of a T-section is similar to that of a doubly reinforced concrete section, considering an area of
concrete (be—bw)*t as equivalent to the compression steel area A's. The analysis is divided into two parts, as
shown in Fig. below.

1. A singly reinforced rectangular basic section , bw *d ,and steel reinforcement As,. The compressive
force, C1, is equal to 0.85f'c a bw, the tensile force, T, is equal to As,fy, and the moment arm is equal to
(d—a/2).

2. A section that consists of the concrete over hanging flange sides 2x[(be—bw) h¢|/2 developing the
additional compressive force (when multiplied by 0.85f'c) and a moment arm equal to d—hf/2. If A 1s the
area of tension steel that will develop a force equal to the compressive strength of the overhanging
flanges, then

i___ be |
B (b-bw)/ 2 bbwy2  BBIY
I
g
p— L \
Toss frcab =] Grossfemmmie
o ™

d-hf/2

¢ |

» T=As; fy

»T=As fy
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As; fy = 0.85f"'c(be — bw)h,

_ 0.85f"c hf (be — bw)

S
4 fy

The total steel used in the T-section As is equal to As, + Asf, or:

As; = As — As;

The T-section is in equilibrium, so C; =T; ,C, =T, ,andC=C; + C,and T =T, + T5.
Considering equation C; = T; for the basic section, then

As, fy =0.85f'cab,, or (As— Asf)fy = 0.85f'cab,, therefore,

il (As — Asg) fy

0.85f'c bw
Note that bw is used to calculate a. The factored moment capacity of the section is the sum of the two

moments Mu, and Mu,:
®Mn = Mu, + Mu,

Mu, = 04s, fy (d - =) = 0(As — Asf)fy(d —3)

As, = (As — Asf) and
i (As — ASf) fy
0.85f'c bw

hy
Mu, = QAsf fy (d — 7)

-]
L
b =
-

h
0 Mn = 0(As — AsP)fy(d —3) + Asf fy (d ==
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Considering the web section bw X d, the net tensile strain (NTS), €t, can be calculated from a, ¢, and dt as
follows:

If c = —and d; = h —62.5, then ¢ = 0.003(d; — ¢)/c . For tension-controlled section in the web, et >
al

0.005. The design moment strength of a T-section or I- section can be calculated from the preceding equation
above .It is necessary to check the following:

1.The total tension steel ratio relative to the web effective area is equal to or greater than p min:

_ As -
pw - bW d = pmin
0.25./fc 14
Pmin = =
fy fy

2. Also, check that the NTS is equal to or greater than 0.005 for tension-controlled sections.

3.The maximum tension steel (Max As) in a T-section must be equal to or greater than the steel ratio used, As,
for tension-controlled sections, with @ =0.9.

Max As= As; (Flange) + p,,,. (bw d) (web) _ .
1 -~ \
Max As = (—) [0.85f"c h(b — bw&' (b, d)

f y maxJ
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In steel ratios , relative to the web only, divide by bw d:

[ As - N Ay
pW - bwd — pmax bwd

Pw—Pf < Pmax (Web)

As

where p,,,. is the maximum steel ratio for the basic singly reinforced web section and p = m.
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Example (10) :A series of reinforced concrete beams spaced at , 2.15 m on centers have a simply supported span of 4.6 m.
The beams support a reinforced concrete floor slab 100 mm thick. The dimensions and reinforcement of the beams are

shown in Fig. below .Using f'c=21 MPa and fy=420 MPa , determine the design moment strength of a typical interior

beam. T .__—__!__—_ F —

>
46m

[ 2.15m | 2.15m |

i
]
]
L]

hf=100

As 3#25 T-Section
oCcoO 00

300
r—
&

S
&

| 250 | 1900 mm | 250 , 1900 mm | 250
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Solution

1.Determine the effective flange width be. The effective flange width is the smallest of:

b —L—4'6—1150
8—4—4— mm

be = 16 hy + bw = 16 X 100 + 250 = 1850 mm.

be = Center to center of adjacent slabs =2.15 m

Therefore be= 1150 mm

2.Check the depth of the stress block. If the section behaves as a rectangular one, then these stress block lies

within the flange. In this case, the width of beam used is equal to 1150 mm.

s fy _ 1470 x 420
~ 0.85f'cbe 0.85x 21 x 1150
therefore ,it is a rectangular section.

3.Check that:

a = 30.01 < hf = 100mm

g A > —1'4—1'4—00033 'c < 31.MP
pw_bwd—pmln_fy_420_ D fOT'fC ‘a’
1470

= 0.0148 > p;, = 0.0033

-]
L
b =
-

Pw = 350 x 400
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30.01

4.Check st : a = 30.01mm.,C = o8s = 3531mm, d,=d=400mm.
_demc  _A00—3531 003 = 0.03098 > 0.005 Ok
=T % T T 3531 wus =T '

Tension Controlled and  ¢=0.9
5. Calculate @ Mn

a 30.01
@ Mn = @Asfy (d - E) = 0.9 X 1470 X 420 (400 — (T) = 213.93 KN.m

6.Check that As used is less than or equal to Max As
Max As = Asg + p,,q,. (b, d)

0.85f'c h;(be — bw)) -
fy + pmax( w )

_By(_600 \(d) 085 ( 600 \ . oo
Po = \600 + fy/\d) ~ 2353\600+420/" 7 =

0.003 + LY 0.003 + =320 __
. Es |, — 200000 | » 02125 ;
e 0.008 b 0.008 ' =
0.85 X 21 x 100(1150 — 250) ~
Max As = + 0.01354 (250 x% 5179 mm? > As (use

MaxAs = (

420
= 1470 mm? O.K.

-
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Example (11) :Calculate the design Moment strength of T- Section Shown below using f'c=24 MPa and

fy=420 MPa , determine the design moment strength of a typical interior beam.

b=915 mm

- B=—
IQ.BS f‘n| 85 f'c
) / . e e
jl ‘ // § Fy 4 F4 E_r l 5%! g
- i r:a, = u
P : & / / %J 0 « CH085fcab ga; 0.85 f'c (b-bw) hf
/s, —_—— = — -+ — — —
E E b it i ._. ________ ' -
[
% @ = = = = N‘IA.— - = _fg %I
o o
6430
s | o 00
® &0 —— - — A — T1=A51'fy > TfAs‘-fy

250mm el
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Solution
1- Calculate a:

_ Asfy

~ 0.85f'c be

As=0 30 = 706 mm?
6 x 706 X 420

4= 0.85x% 24 %915
Sincea > hf ,itisa T — Section analysis

a

=9531mm > hf = 80 mm

2- Find As;
o 0.85f"c hy (be — bw) 3 0.85 X 24 x 80 X (915 — 250) e
fy 420
As; = As — As; = 4236 — 2584 = 1652 mm?
LA fy _ 1652x420 136.05
0.85f'c bw  0.85 X 24 x 250
_a 136.05
c= ,3_1 =085 160.06 mm
3- Check et <~ .
d, = 460 mm -~ t_\
d,—c 460 — 160.06 "
3= %X 0.003 = 16006 X 0.003 = 0.005623 > 0& 0K

?=0.9 Tension Failure
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4- Check As min.
As .. =p., bwd = %bw d where f'c <31 MPa

As .. = 0.0033 x 250 X 430 = 357.98 mm?
Max As= Ayt Py, (b, d)

Sy 220 69
M= 085fc 085x24 “

= 0.6375 Br(__600 Y _ 0.6375 x 252 600 *09) 001651
Pmax Po = 1 \600 + fy 2059\ 600 + 420/ \430) ~

Max As= 2584 + 0.01651 X 250 X 430=4364.3 mm?
As = 4236mm? < 4364.3 mm? 0.K

5. Calculate @ Mn

h
@Mn=0 [(AS — Asf)fy (d - %) + Asf fy (d — ?f)]

.05 0
) + 2584 x 420(4 7 606.97

88
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Dimensions Of Isolated T-shaped Sections

In some cases, isolated beams with the shape of a T-section are used in which additional compression area is
provided to increase the compression force capacity of sections. These sections are commonly used as
prefabricated units. The ACI Code, Section 6.3.2.2, specifies the size of isolated T-shaped sections as follows:
1.Flange thickness, h;, shall be equal to or greater than one-half of the width of the web ,b,,,.

2.Total Flange width b shall be equal to or less than four times the width of the web, b,,,.

5
A \
!
o
b<4bw
hf > bw/2
! o o o
__bw_4
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Inverted L-shaped Sections

In slab beam girder Floors, the end beam is called a spandrel beam. This type of Floor has part of the slab on
one side of the beam and is cast monolithically with the beam. The section is un symmetrical under vertical
loading (Fig. shown below). The loads on slab S1 cause torsional moment uniformly distributed on the
spandrel beam B1. The over hanging Flange width (b- bw) of a beam with the Flange on one side only is
limited by the ACI Code, Section 6.3.2.1, to the smallest of the following:

CL CL
| |
I I
"
I i I i
A | b A
- i I I
= Beam ; | Beam ; | Beam
| |Bl
: | Slab ' '
Slab S1
L. | i | il
| 4im A 4m .
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1 be == be = — = 500 mm ( controlled)
12 12

2. be=6><hf+bw. be = 6 x 150 + 300 = 1200 mm

3700

3 be =D be=T+300=2150mm
b 3 |
= - i
=
o) | = I
C_?-lr ‘ \ - i iz A et in s
WL ADB | ‘pandrel beam Aos A =0C00L011 %s
1300, 3700 mm .300. 3700 mm .300
b be=500 mm
I
ﬂ 3
o bbw g g
‘ e o o ® @0 0

bw 1| §UO mim 91
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Example (12) : Calculate the design moment strength of the precast concrete section shown below
using f'c= 28 MPa and fy=420 MPa .

Solution:
1.The section behaves as a rectangular section with b=350 mm and d = 610 — 62.5 = 547.5mm.

Note that: the width b is that of the section on the compression side.
2.Check thatp = As/bd =5 X 615/(350 x 547.5) = 0.01605

_By(_600 \(d) 085 ( 600 \ . oo,
Po = n\600+ fy/\d) ~“1765\600 +420/ " ~

0.003 + 7];—3’ 0.003 + %
Dy = 1o, = x 0.02834 = 0.01807 > p = 0.01605

0.008 0.008
14 14 — 390
Pmin 7 = 750 — Y-
420 < I
. fy | | =8 i
So its tension-controlled sections. A
Therefore $=0.9. Also p > p, .. min=0.00333.Therefore, p is within the limits & — e 4] g
&
of a tension-controlled section. =
3.Calculatea (a) R
_ Asfy  5x615x420 (EE G - o As 5628 mm
= 085fch 085%x28x350 oo ' 5 ,
a 155.
(Z)Mn=(Z)Asfy(d—§) =0.9><5><615><420><<547.5— - 500 mm

= 546.28 kN.m 92
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Introduction

In the previous chapter, the analysis of different reinforced concrete sections was explained. Details of the
section were given, and we had to determine the design moment of the section. In this chapter, the process is
reversed: The external moment is given, and we must find safe, economic, and practical dimensions of the
concrete section and the area of reinforcing steel that provides adequate internal moment strength.

Rectangular Sections With Tension Reinforcement Only
From the analysis of rectangular singly reinforced sections the following equations were derived for
tension-controlled sections, where f'c and fy are in MPa:

0.85 fC’ 600 dt
Pp = ) ()
fy 600+ fy ~ d
0.003 + % 3B 1 (d;
Pmax = 0.008 Pp OT Pmax = g? E
e Y
0.85f'c

f'c — 28y~
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For fy =420 Mpa Pmax = 0.6375 py,
For fy = 280 Mpa Pmax = 0.55 p,
For fy = 350 Mpa Pmax = 0.594 p,
f'c—28
fr = 0.85—0.05———— > 0.56
w_
0.85f'c

It should be clarified that the designer has a wide range of choice between a large concrete section and
relatively small percentage of steel p , producing high ductility and a small section with a high
percentage of steel with low ductility. A high value of the net tensile strain, €t, indicates a high ductility
and a relatively low percentage of steel. The limit of the net tensile strain for tension-controlled sections
1s 0.005 ,with =0.9. The strain limit of 0.004 can be used with a reduction in ¢ . If the ductility index is
represented by the ratio of the net tensile strain , €t, to the yield strain, ey=fy/Es, the relationship between
et, / b, ,andet/ey is shown in Table below for fy=420 MPa . Also, the ACI Code, Section 6.6.5.1,
indicates that €t should be > 0.0075 for the redistribution of moments in continuous flexural members
producing a ductility index of 3.75. It can be seen that adopting € ,> 0.005 is preferable to the use of a

higher steel ratio, p / p b ,with & =0.004 , because the increase.in Mn is offset by 3 value of
£~0.004 represents the use of minimum steel percentage of 0:00333 for f'c=28 Mp
.This case should be avoided. k"

=




For fy = 420 Mpa

Prof. Dr. Haleem K. Hussain

£y 0.004 0.005 0.006 0.007 0.0075 0.008 0.009 0.010 0.040
plps, 0.714 0.625 0.555 0.500 0.476 0.454 0.417 0.385 0.117
EE, 2.0 &5 3.0 3.5 3.75 4.0 4.5 5.0 20

b 0.82 09 0.9 0.9 0.9 0.9 0.9 0.9 0.9
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The value of €, between €, = 0.005 and &, = 0.004 can be calculated from Eq.:

250
o = 0.65 + (gt — 0.002) (T)

The design moment equations were derived in the previous chapter in the following forms:

¢Mn = Mu = ¢ R bd ?

1
R=®pfy<1—§ pm>

: : : 1
This equation have two unknown, this can be find by assumes p < > Pmax for and also assume value of

b then we can find the value of h

For design purpose , two method can be adopted:

A- First Case

The knowns is Mu and the properties of used material and the unknowns is As ,d , b

1
1- assume p < > Pmax and assume b

2- find value of R:

R = Qpfy 1—1pm and m = Iy
2 0.85f'c

3- find the effective depth d from equation : = 1\
B
dMn = Mn =¢Rbd2&‘

g Mu
~ |@R Db
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4- Calculate As:

As= pbd

Then choose a suitable bar diameter numbers and calculate the total depth h considering the concrete cover ( h should be
choose around 10 mm )

B- Second Case
-The knowns Mu and the dimension of section according to the architectural requirement

- Unknown is the steel Area As

1- calculate R value

Py Mu
~ Qbd?

2- Calculate steel Ratio p from :

1 1 1 2mR

p=—|1- —

m fy
Then compare value of pmin and pmax with value of p
3- calculate the As

As = pbd e

than find the no. of bars
If p>p,.. -the section should be design as Double reinforced sect
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Spacing Of Reinforcement And Concrete Cover

Specifications

Figure below shows two reinforced concrete sections. The bars are placed such that the clear spacing shall be at least
the greatest of (25mm), nominal bar diameter D, and (4/3) d,,,.(nominal maximum size of the aggregate) , (ACI
Code, Section 25.2.1). Vertical clear spacing between bars in more than one layer shall not be less than (25mm),
according to the ACI Code, Section 25.2.2. Also for reinforcement of more than two layers, the upper layer
reinforcement shall be placed directly above the reinforcement of the lower layer. The width of the section depends
on the number , n, and diameter of bars used. Stirrups are placed at intervals; their diameters and spacing depend on
shear requirements, to be explained later. At this stage, stirrups of (10mm) diameter can be assumed to calculate the
width of the section. There 1s no need to adjust the width ,b , if different diameters of stirrups are used. The specified
concrete cover for cast-in-place and pre-cast concrete is given in the ACI Code, Section 20.6.1. Concrete cover for
beams and girders is equal to (38mm), and that for slabs is equal to (20mm), when concrete is not exposed to weather
or in contact with the ground.

Minimum Width of Concrete Sections
The general equation for the minimum width of a concrete section can be written in the form

b, =n XD + (n—1) Xs + 2 X (stirrup diameter) + 2 X (concrete cover

m

Where:

n = number of bars

D = diameter of largest bar used
s = spacing between bars (equal to D or 25 mm ,whichever is larger)
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If the stirrup’s diameter is taken equal to (10 mm) and concrete cover equals .(38mm),then

B,,=nXD+ (n—1) Xs +96
' l | A
'E! ,.g di'g D| S 1D| S |D % o 'E
Es il 0 B
¥ - - szl ol w2 - > o min mm '
I ( pn O [a] al [ [( | ) 1

C=Coﬁ£'r;te Cover

L T L e

we_comes: d

-

This equation, if applied to the concrete section s in Fig,
b, = 3D + 25 + (96mm) :
b, = 3D + 2S5 + (96mm) while for 4 bars bl = 4D + 3§ + (96mm)
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In fig. below , ¢ = 20 mm when ds more than 10 mm

b= 2% 38+2ds + 2¢c+ (n—1)(D +5)
b,.,=116 + 2ds+ (n—1) (D +5)

LC D/2 S L D L S D/2 C L

If b is known then: ,l ,‘ /‘ /‘
b —116 — 2ds | Q O O

Bar No.=n = + 1 S\ g

D+S

38 ds

~~__Stirup Dia= 10 mm

bw

10
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Minimum Over all Depth of Concrete Sections

The effective depth, d, is the distance between the extreme compressive fibers of the concrete section and the
centroid of the tension reinforcement. The minimum total depth is equal to d plus the distance from the
centroid of the tension reinforcement to the extreme tension concrete fibers, which depends on the number of
layers of the steel bars .In application to the sections shown in Fig

D
h,=d;+ 5 + ds.+ 38 mm  Onelayer

25
h,=d,+ > +D+ ds+ 38mm  Two layer

When use bar diameter @ < 28 mm then total depth calculated from :
h= d+65 mm one layer

Or
h= d+90 mm two layer

It should be mentioned that the minimum spacing between bars depends on the maximum size of the coarse
aggregate used in concrete. The nominal maximum size of the coarse aggregate sh ' than one-
Fifth of the narrowest dimension between sides of forms, or one=thisd of the depth o

of the minimum clear spacing between individual reinforcing bg ndles of bars (ACI Code,
26.4.2.1). -

11
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Example (1): Design a simply reinforced rectangular section to resist a factored moment of 490 KN.m using

the maximum steel percentage p,,, for tension-controlled sections to determine its dimension. Given: f'c=21
MPa fy=420 MPa.

Sol.

for f'c =21 MPa then [, =0.85
fy

m 085 f'c 3.53, =09

_ By 600 \(dr)_ 085 ( 600 \ o oo
Pr = \600+fy)\d )~ 2353 \600+420/" 7 =~

_ (0.003+fy/Es 0.003+0.0021
Pmax = ( 0.008 ) b= ( 0.008 )pb = WIS

p. =0.01355

R=pfy(1-3 pm)=001355x 420 ( 1 - x 0.01355 x 23.53) = 4.784 MPa

Mu
Mn = — = Rbd?

- ~amg
paz = M1t _ A0XA0" _ 13005277 mms >> \
T DR 09x4784 o %

Assume b and find d

12




As mm2

250 672.18 2298.86
300 613.61 2518.25
350 568.09 2720.00
400 531 2907.83
! r/ ‘\\

If we choose b = 250 mm,d = 672.18 mm

@ 22 mm ( 380 mm?). E
2298.86 N
No.of Bars =n = = 6.04 Use 6 Bars = 6922
380
Bar N ()_b—116—2ds+1 % O O

ds =10mm,D = 22mm,S = 25mm

250 — 116 — 2 x 10 S . 250mm \
n= +1=2342=3 e

22 + 25

If usetwo layer h=d+90mm= 76218 mm useh= 770 mm (increase the value for 10 mm)

13




Check the effective depth :

25
d=h—38—10—22—7= 770 — 38 — 10 — 22 — 12.5 = 687.5 mm
b= 250mm

CBi( 600 \(dt
Pp = E<600 n fy) (F)

22
dt=770—38—10 — 7 =711 mm

085 600 711\ _ oot
Pv= 53531600 +420/\6875/) "

_ (0.003+ fy/Es\ _ (0.003 +0.0021
Pmax = 0.008 b= 0.008

=0.6375 x 0.02219 = 0.014146

) X pp=0.6375 py,

pmax

Mu
Mn = 7 = Rbdz

_As 6 x 380
P =34 T 250 x 687.5

= 0.01326 < Py

1 1
R =pfy < 1- 5 P m) = 0.01326 x 420 ( 1-— > 0.01326 x 23.53) =4

Mn = 4.7 X 250 X 687.52 = 555.37 KN.m
Mu = Mn = 0.9 X 555.37 = 49983 KN.m Mu = 490KN.m OK

-]

-

L
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Example (2): Design a simply reinforced rectangular section with steel percentage p = 0.5 p,,., of previous example

Sol:
p = 0.5 p,., then tension Controlled section 0=0.9

p = 0.5 x(0.01368) ( previous Example Exa. (1))
p = 0.00684

1
R = ®pfy(1—§ pm)
= 0.9 x (0.00684) x (420)(1 — 0.5 x (0.00684) x (23.53)) = 2.642
Mu \/ 490 x 106

d =

@b R v 09b X 2.642

Assume b to find d:

250 907.9 1552.5
300 828.8 1700.7
350 767.3 1836.9

400 717.8 1963.8

15
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Use b = 300 ,then d = 828.2 mm, As = 1700.7 mm?
Use @ 25 mm
Ab = 490 mm?

1700.7

= 3.47 mm use 4 bar

No. =n=
o0.0f bars =n 290

To find the bw , how many bars can be contains :

b—116 -2 de+1_ 300—116 — 2 x 10
D+s B 25 + 25

Use One layer 1

+1=4.28 use 4 bar

n =

Find total depth of Beam h

D
h=d+ 38 + ds +—=

2

2 5
= 8288+ 38+ 10+ — = 889.3mm

2 =

o)

Use h= 890 mm 0
Note that in this example (2) , the value of h use less than calculated nearest 10 mm , 4(1)25
cause the provided steel area is larger than required area and this allow to use h less 50 DO
than calculated . =» |

L
-

While in example (1) the selected h was greater than the calculated | §

provided steel area was less than required in very small a mount

300 mm
|
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25
d=890—38—10—7=829.5mm

As 4 X 490

P=%d 300x8205 (007876

1
R = @pfy ( 1-5p m> = 0.07876 (420)(1 — 0.5 (0.007876)(23.53)) = 3.0 MPa

Mn =3 X300 X (829.5)2 = 619.26 KN.m

PMn = Mu = 0.9 X 619.26 = 557.33 KN.m > Mu = 490 KN.m
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Example (3): Find the necessary reinforcement for a given section that has a width of 250 mm and a total
depth of 500mm ,if it is subjected to an external factored moment of 222 KN. m. Given: f'c= 28 mPa and
fy=420 mPa .

Solution

Assume one layer of steel
d= h—65mm = 500—65 = 435mm
Mn Mu 222 x10°

bd>  @bd®> 0.9 X 250 X 4352

_11 12mR
P =m fy

_ fy 420
M= 085f¢c 085 x 28

1 2 x17.65 x 5.214
p 1 il = = 0.01419

R = = 5.214

= 17.65

Bl 65 420

_Ba(_600 \(de) 085 [ 600\ oo
Po = \600+ Fy/\ '@ ) ~ 1765 \600 +420/ " ~

0 % 0.0051 S ?%
Pmax =\ ———L5 | p, = X pp = 0.6375 p), = 0.6375%328 = 0.018059 > p = 0:

0.008 0.008

-

Tension Controlled section ©@= 0.9

18
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As =p X bx d = 0.01419 x 250 x 435 = 1543.1 mm?

Use @ 20 mm ( A,=314 mm?) A . - §
1543.1 ( ) |
No.of bars = 3z - 491 Use 50 20 mm

Check spacing between bars

_b—116—-2xds _  250—116—-2x10 _ 5 ;
n= D +1 = 20+ 25 +1=3.53 useSbar,rs8 S(I)ZO :
Need two layers o '
Or increased the steel bar area O . O i

103

, 2X314x103+3x314Xx58 Y -
y = =76 mm *

5% 314

d=h-76=500-76 = 424 mm . 250mm |

_5x314 _ 5x314 _ .
P=""pd ~ 250%x424

1 1 ~ i,
R = pfy ( 1=5p m) = 0.01481 x 420 ( 1 - (0.01481 X 17,65 > = 5.40;-\
@Mn = Mu = @Rbd? = 0.9 X 5.407 X 250 x 4242 = 218.72 &

" .< Mu applied

Note: we can start solution by assuming two layer and d=h-90 mm
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Thank You..........
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Rectangular Sections With Compression Reinforcement

A singly reinforced section has its moment strength when p_ .. of steel is used. If the applied factored moment is greater than
the internal moment strength, as in the case of a limited cross section, a doubly reinforced section may be used, adding steel
bars in both the compression and the tension zones. Compression steel will provide compressive force in addition to the
compressive force in the concrete area.

The procedure for designing a rectangular section with compression steel when M, f'c, fy , b, d,and d’

are given can be summarized as follows:

When Mu>@ Mn ..

600 d
1- calculate  py = %] (600+fy) ( c: )

fy
0'003+Es

0.008
where p; = 0.75 pPrax 10 Prax » and As; and its preferable to use p; = 0.75 prax

using to produces moment equal to Mn,

and calculate  Pp0x = ( ) pp or calculate Agy = pybd (maximum steel area as singly reinforced).

1
RE= plfy< 1—=0p m) and Mn, = Rbd? or Mu, = @Rbd?

2
2. Calculate M,, M, — M,q,0r Mn, = Mn — Mn,, the moment to be resisted by compression steel.

3. Calculate the As, in tension zone where ;

o . Mn -
As = A51 o= A52 and ASZ = Wzd—,)

4. Calculate the compression stress at the compression steel and check the co

o (Bad\ (600
Pr=P =P =\md)\600—fy

22
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It the condition is checked then: fs' = fy

And Ifnot then fs’' < fy and fs'calculated from formula:

id

fs' = 600 (1 -

In case of fs' = fy use

__——

<
i d) =
As' = As,

and fs' < fy wuse As' = As, X (f—y)

fs'

' = 600 i} —600(1 @
s = c |~ C

a
a=pymd and C=—

B

o B.d’
..fs—600<1 S

5. Choose the Tension steel bar diameter and compression steel bar whether can arrange in single layer

|0.85 f'c

0.003
= [ n < Ao fu!
i — — & -2 - gt' / ;‘f’ = o ‘CS As' fs
| o N.A , % 5
,.6 e
| Y " gs. . & 'TfAsl.fy o 1 T;=Asz.fy|
B bw | T=As.fy

23
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Example (4): A beam section is limited to a width b = 250mm. and a total depth h = 550 mm and has to resist
a factored moment of 307 KN.m. Calculate the required reinforcement. Given: f';= 21 mPa and f,= 350
mPa. d’ =65 mm.

Solution
Determine the design moment strength that is allowed for the section as singly reinforced based on tension-
controlled conditions;

Assume ( Two layer of steel ) (‘assume ¢ 28 mm)
Then d =h—90=550—-90 = 460mm

25 28
dt = 460 + > 0 > = 486.5mm

oy 31< 600 )(dt)
—calculate pp, = —( ———7 || —
m \600+ fy/\ d

m=< 1y >= 30 _ 1961 and  B,=0.85

0.85f'c/ 0.85 x 21 ' =
085 [ 600 \[4865

b= 1961 (600 + 350) ( 460 ) = 0.02896

(0.003 + %) (0.003 + —203050000> 3
Pmax = — 0 0T Ay = 0008 X 0.02896 = 0.01719» or pPmax = 3

Mu = QRbd?
_ 307 x10°
"~ 0.9 X 250 X 4602

h-J
3 -—
gl

= 6.448

24
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i 1 1 _ 1 1 1 2x19.61 x 6448 = 0.02413 > = 0.01719
p= ~ 19.61 350 - Pmax = ©-

Then Design the section as Double Reinforced Section ( D.D.R.S)
2—Assume  p; = 0.75 p,4s

p1 = 0.75x%x0.01719 = 0.01289

As, =p,;bd =0.01289 x 250 X 460 = 1482.6 mm?

R=p,fy(1-3pm)=001289 x 350 ( 1 -3 x 0.01289 x 19.61) =3.94

Mn, = Rbd? = 3.94 x 250 X 460% = 208.43 KN.m

3— Mn,=Mn—Mn, = (37) - 20843 = 132.68 kN.m

4- Calculate the Total Tension Steel

_ Mn, 13268 x10°
fy(d—d') 350(460—65)

As = As, + As, = 1482.6 + 959.7 = 2442.3 mm?

= 959.7 mm?

As,

5- Check the stress in compression steel

-]
C/(Bd’\ [ 600 0.85 x 65 600 | :
pL=p—p = = 0.0 o
md ) \600— fy) = \19.61 x 460 / \ 600 — 350

25
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f's < fy =350MPa  NOT 0.K

=600(1 B d =600( 1 085 x 65 = 314.9 MP
i 001289 x 19.61 x 460/ ~ ¢

pym
, 350

As' = As, X ( ) 959.7 X <314 9> = 1066.7 mm?

For 25 mm ( Ab = 490 mm?)

Use5¢p25mm = (5 x490 = 2450 mm?) > As required = 2442.3 mm?

For As' Use3 ¢22mm = (3 x 380 = 1140 mm?) > As’ required = 1066.7 mm?

6- Check no of Bars in one layer

use stirrup diameter ds = 10 mm
b—116—2 x ds 250 — 116 — 2 x 10
n= oy +1 = T +1=328=3
22 5025

d = 38+10+7= 59 mm

dt = 550 — 38 — 10 — 2 = 489.5 mm 5

2 N

d=h—y' H —V-x = 4 -

. 3X490 X 60.5+ 2 x 490 x 110.5 a
= O = 80.5 mm \O s O @G 0 QT =
d = 550 — 80.5 = 469.5 mm B C

085 600 4895\ . A

Pb = 19,61 (600 n 350) (469.5) = 0.028>4 : |

0.003 +

350)
I 200000 _ 250 mm _J
Prmax ( i x 0.02854 = 0.01695 _ 20mm

26




Prof. Dr. Haleem K. Hussain

_As___ 240 020873
P=bd T 250%x 4695

_As 1140 o
P = d T 250%x 4695

Check again the stress in compression steel

o0ttt — o — o o (P (600 ) _ (_085 x59 600 \_ o
1 — PP F\md/\600-fy) ~ \19.61x 4695 )\600—350)

Then: f's < fy = 350MPa

Check the failure at the tension steel :

p— p’ < Prmax
p—p' =0.020873 — 0.00971 = 0.01116 < pyq, = 0.01695 0.K
To find the f's use the direct method where: (also can use other method to find a and c)
Aa>—Ba—C=0
A=1,
= p < 600 ,>

=ma\p———pP

fy
. 600ﬂ dd'o’
fy !

a=%[B+\/BZ+4AC] C =

I Q

27
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600
B =19.61 X 469.5 (0.020873 ~ 350 X 0.01116> = 16.03

600

C = 350 X 0.85 X 19.61 X 469.5 x 59 x 0.01116 = 8833.4

1
a=; [ 16.03 +/16.032 + 4 x 1 X 8833.4] = 102.3mm

C=—== L 120.35
~ g 085 oo
 _(c=d\(12035-59\
S 12035 | 77 ¢

OMn = @ [(Asfy — As'fs") (d — g) + As'fs'(d — d’)]

102.3
= 0.9 [(2450 X 350 — 1140 x 305.87) % (469.5 — T) + 1140 x 305.87 x (469.5 — 59)]

= 320.4KN.m > Applied Mu = 307KN.m  0.K % \

28
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Another method to calculate a and c

's =600 1 prd =600(1 0.85 X 59 =307.2 MP
f's = pomd) 0.011163 x 19.61 x 4695/ _ >~ “"17¢

c—d’
fs’=600< - )

307.2C = 600 C — 35400
C =1209mm
a=102.7mm ok




Prof. Dr. Haleem K. Hussain

Example (5): A beam section is limited to a width b = 300mm. and a total depth h = 500 mm and is subjected
to a factored moment of 405 kN.m. Determine the necessary reinforcement. Given: f' = 28 MPa and f,=
420 mPa, d’=65 mm.

Solution

1- Design the section considering single reinforced section ( assume two layer of steel)
d=h—-—90 = 500 —-90 =410 mm

o Mn o 405x10°
~ bxd? 09%300x4102
N i = 17.65
M =085 fc_ 0.85x 28
1 ) . 2mR
PSS
m fy
_ 085 [ 600 )\ _ 028329
Pb = 1765\600 +420)
(0.003 + ]];—y)
P = — = Pp
max 0.008
_ (2003 +0.0021) ) <375 % 0.028329-0.01806
i 0.008 T ' o
_if,_|_2mRY_ 1 [ 2x17.65x8923 |\ ' DO _ 001806
p=— fy |~ 17.65 420 - >

30




The Beam section should be design as D.D.R' S

assume p, vary from 0.75 p_.. t0o p ...

Use p, = 09p,.. = 0.9 x0.01806 = 0.016254
As, = p; X bxd = 0.016254 x 300 X 410 = 1999.24 mm?

0016254 — oo 4 (BT (600 ) _ (085 x65 600\ _ o0
- — PP 1\ md/\600—-fy) " \17.65 x 410 /\600 —420) = =

So the fs' < fy

Check the stress in steel at compression zone from Formula:

f's=600(1 Bd” ) _ 600 1 0.85 x 65 = 318.16 MP
°r pomd) 0.016254 x 17.65 x 410) _ ~~* 4

. fy
As' = As, (fs’)

_ Mn,
 fy(d—d)
Mn, = Mn — Mn,
Mn, = Rbd?

As,

il
R=P1fy<1_§.01m>

Prof. Dr. Haleem K. Hussain
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1
R =0.016254 x 420 ( 1—-x0.016254 X 17.65) = 5.848

2
Mn, == 5.848 x 300 X 410% = 2949 kN.m
Mu 405
M‘I’lz = 7 — Mn1 = W — 2949 = 155.1 KN.m
Mn, 155.18106
As, = 1070.4 mm?

~ fy(d—d’)  420(410 — 65)
as' = as, x [22) = 10704 x (220

ST AR\ Fe )T N 38116
As = As, + As, = 1999.24 + 1070.4 = 3070mm? Q)

> = 1179.5 mm? \ %]

O

2028
As ,Use 5 @ 28 mm = 3075 mm?

As’ ,Use 2 @ 28 mm = 1230 mm?

_b-116-2xds _300-116-2x10 .
e D+S - 28 + 25 -

,_2><(615)><115+3><(615)><62_832
i’ 5 x 615 - Goemm

500 mm
wn
>
MO
(@ 0]

28
d’=38+10+7=62mm

28
dt=500—38—10—7=438mm !

d =500 —y' =416.8 mm *

6
y
&
w
115
1

438
Po=11c 8 x 0.028329 = 0.02977 }« 300 mm »‘

32
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p.. = 0.6375 p, = 0.6375 x 0.0297 = 0.01898
3075

~ 300 x 416.8

As’ 1230

P =d T 300xateg 009837

D = 0.02459

Check the stress in compression steel :

001a7s — o o of (1) (600 ) _(_085x62 600\ _raog
1 i — pfl md )\600—fy) ~ \17.65 x 4168/ \600 —420) ~ °

Sothe fs' < fy =420 MPa

To find the value of fs' there is two method , Direct Method and Indirect Method

1- Direct Method
Aa’?—Ba—-C=0

A=1,
. d( 600 )
=m p——
fy

e 80

P
azz[B+\/B2+4AC],
C_a

B

Find the constant ;
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600
B =17.65x 411.5 (0.02459 ~ 220 * 0.009837) = 76.53

600
C = 220 %X 0.85 X 17.65 x 411.5 X 62 x 0.009837 = 5378.85

1
a= [76.53 +/76.53%2 + 4 x 1 x 5378.85 ] = 120.989mm
a 120.989

=ﬁ=W= 14234mm
s = 600 [ =% = 600 (14234 =62\ _ 3357 mp
i s 3 c | 14234 )~ °°o/mra

2- The In direct Method
find a when fy = 420 MPa
_Asfy—As'fs’  3075x 420 — 1230 x 420

085f'ch 0.85 X 28 X 300 = 108.23 mm ( 1st attempt)
108.23
C = 085 127.34 mm
) c—d 127.34 — 62
fs=600< ;. >=600< 12734 >=307.9MPa < 420 Mpa
- As fy — As'fs’ | 3070 x 420 — 1230 x 307.9 bl ~ i ey
0.85f'c b 0.85 x 28 x 300 - e
and C= 150 mm & P

/= 600 (22292 _ 35omp
fs = 150 )~ ‘

34




Prof. Dr. Haleem K. Hussain

_ Asfy—As'fs' 3070 x 420 — 1230 x 352 _ 1008 e it N
~ 085f'ch 0.85 x 28 x 300 =11995mm  and ¢ = 141.12mm (3rd attempt)
- 1411262\ _ .

fs'= 14112 )~ ~oonmra
_Asfy—As'fs' 3070 x 420 — 1230 x 336.4 _ . e aas R
~ 085f'ch 0.85 x 28 x 300 gl oL LT G 2 i e s a4 (4th attempt)
/= 6002428 92) _ oo 16 mp

fs'= 14428 ) Jreso-mbad

_Asfy—As'fs' 3070 x 420 — 1230 x 342.16

= = 1216 dC = 143.1 Sth attempt
0.85f'ch 0.85 x 28 x 300 mm - an mm ( 5th attempt)

/= 600 (231292 _ 5401mp
S 1431 ) e

PMn =@ [(Asfy — As'fs") (d — %) + As'fs'(d — d’)]

121.4 -
= 0.9 [(3075 X 420 — 1230 x 338.7) X (416.8 — T) + 1230 X 338.7 X (416.8 —

-]
1 e
= 413.4 KN.m > Applied Moment Mu = 405 KN.m OK p
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FLEXURAL DESIGN OF T- BEAM CONCRETE SECTION
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Introduction

T-Beams RC floors normally consist of slabs and beams that are cast monolithically. The two act together to
resist loads and because of this interaction, the effective section of the beam is a T or L section. T-section for
interior beams L-section for exterior beams.

Normally, the thickness of slab varies between 100 mm and 200 mm and the web width its from 200 mm to
400 mm and its often known. Effective depth and As reinforcement quantity will be calculated. When
effective stress block depth less than hf of slab thickness that’s lead to design the Beam as a rectangular
section while with a greater than hf, the section will be true T- section

Two Known Case for Design Procedures :

1- d 1s known and As should be calculated

A-Check the section is behave like rectangular section or T section . Assume a = hf and calculate the moment
produce by the two flanges :

h
Mn( flange) = ¢ 0.85 f'c b.h; (d — ?f)

B- if the applied moment Mu > Mn, then :
a > h, section should be design as T- Section
and if the applied moment Mu < Mn, then :

a < hf and the section should be design as rectangular section ( b d )
Mu

~ @bd?

i 1 2mR
m fy
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s be )
.85 f'c (b-bw)l 2 (b-bw)f 2 Ig.&'x f’cl
i ' g
L oy
fu_‘as_f‘ﬁb | Ll I = Sz“ 0.85 f'c (b-bw) bf

d-hf/2

»T=As,fy

O——ieh T=As;.fy
Mn,
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As=pbd > As .,
In T- section case calculate :

Asf = —— same (Asf.fy =0.85f"c.(b—bw)h;)

hy
Mu, = @ Asf fy d—?
Mu = Mu, + Mu,
Mu, 1 2mR

p=—[1- [1-==

R=Sba m fy

As; =pbd and Total As = As, + As,
2- When As and d 1s Unknown:

A-Assume a = hf then we can calculated the steel area at tension zone with equal the compression force for flange

b hf )
Asp = — or (As;.fy =0.85f'cbhf)

B- calculate d depending on calculated Asf and the Applied Mu

hy
Mu = @ Asft fy (d—;)

40
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Mu hf

or dZ—Q)Asftfy+ >

If d is a suitable then :

h= d+90 ( for two layer ) and
h = d+ 65 ( for one layer )
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Example (6): The T-beam section Shown below has a width bw =250 mm, a flange width be =1000 mm ,

a flange thickness = 100 mm and effective depth d = 370 mm. Determine the necessary reinforcement if the

applied factored moment Mu= 380KN.m . Given: f' ;=21 MPa and f,= 420 Mpa.

g b=1000 mm = ]
0.85f'c
i 1 ET T E :5"
) © E_‘Eﬁ.ﬁfhab
= -
= ol
<l 5|5 E:
5¢28
' ® ®
y I e ®©e & — — — — — — — — —o——5 T=As,fy
___25011]111___
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1- Check the neutral axis depth
assume : a = hf = 100mm

@Mn = 9 (0.85 f'c)be hf (d — L) = 0.9 x 0.85 x 21 X 1000 x 100 (370 — =2) = 514.08KN.m > 380KN.m

=~ the section design as a Rectangular section with b = be = 1000 mm

o M 380x10°

~ @bd? 0.9 x 1000 x 3702

Ay
M= G585 e 085xzl o0

i, f,_zmR\_ 1 [ 2x2353%3084\ o
P = fy |~ 2353 420 e

As = p bd = 0.008118 x 1000 x 370 = 3003.75 mm?
a=pmd=0.008118 x 23.53 X 370 = 70.68 mm < hf = 100 mm

Total As =5 X 615 = 3075 mm?
3075

Pw = 350 % 370 = 0.0033

1.4
= 0.0332 > Pmin = m
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b — bw)h
Max As =(—)f+ P max W d
0B, 600 dt\  0.85 600 dt
Po =7 \600+420)\d )~ 1765 \600+420/\d
. 2% (615) X 115 + 3 X (615) X 62
= S ElE = 83.2mm 5¢28
h =370+ 1y’ =370+ 83.5 = 453.5 mm
28 O J, O
dt = 4535 —38 — 10 — — = 391.5 mm —Ix “-
- / —
0.85 600 391.5 \‘Q > |O O I
Py = = 0.02248 \°
23.53 \600 + 420/ \ 370 ?
fy
0.003 + 3=
o (WSES p, = 06375 X 0.02248 = 0.01433 |< 250 mm ,_‘

(1000 — 250) x 100
Max As = + 0.01433 x 250 X 370 = 4513 mm? > As = 3075 mm?

23.53
a 70.68 --
— =——=283.15mm = e

B, 0.85 >
dt — c 391.5 — 83.15 =
e =|———)x 0003 = TR X 0.003 = 0.0113 > 0.005 OK @®=09 T.C

a
I
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Example (7): The Floor system shown below consist of 75 mm slab thickness supported by 4.25 m span
beam spaced 3 m on center. The beam have a web width bw = 350 mm and an effective depth d= 470 mm.
Calculate the necessary reinforcement for a typical section interior beam if the factored applied moment

Mu= 575 KN.m . Given: f’. _ ,; MPa and f, = 420 mPa, .

am
: 1062.5 mm :
£
| S £ |
As ° A As
|35u 265m I:ﬁﬂ 2.65m | 350
] p— il | i_' il |
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Solution :
find the effective be:

1—be =16hf + bw =16 X 75 + 350 = 1550 mm

2—Db —L—4250—10625
e= =" = S5 mm

3 —be = b (center to center adjacent panels) = 3000 mm
=~ be =1062.5 mm

1-Design section as Rectangular Section :

o Mu _  575x106 .
T @bd? 0.9 x 1062.5 x 4702
L [y B U
M= 085 fc 085 %21 o3
1 2mR 1 2 X 23.53 X 2.722
p=—[1- 1-=—7—|=——1- |1- = 0.007069

m fy 23.53 420 =
a=pmd=0.007069 x 23.53 X 470 = 78.18mm > hf = 75% \

= Design as T- Section
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(b—bw)h, (10625 —350) X 75
m B 23.53

calculate Asf = = 2271 mm?

h 75
Mu, = QAsf fy <d — 7f> = 0.9 X 2271 x 420 X <470 — 7) =371.27 KN.m

&~ Mu; = Mu — Mu, = 575 —371.27 = 203.73 KN.m
Mu 203.73 x 10°

R = - = 2.928
@®bd? 0.9 x 350 x 4702
i, f,_zmR\_ 1 [ 2x2353x2928\_
P = fy |~ 2353 420 e

As; = p bd = 0.007662 x 350 x 470 = 1260.35 mm?
Total As= As,;+As,=1260.35+2271=3531.35 mm?

Use 6 @ 28 mm = 3690 mm?
a=pmd =0.007662 X 23.53 X470 = 84.73 mm

_a 84.73 o
C_ﬁ1_0.85_ .68 mm
dt — c 496.5 — 99.68
€t = X 0.003 = X 0.003 = 0.01194 > 0.005 OK
c 99.68 -
~0 =009 T.C

h-J
3 -—
_ar

25 28
dt = 470+7+7=496.5mm

i 0.0033 < p OK
Pmin = 7 = U p
iy

47




b — bw)h
Max As = g+ P max W d
085 600 496.5 — 0.02245
Pp=5353\600+420/\ 270 ) =
<0003-+%¥)
Pmax = \——==2 | pp
g 0.008
8 (DR = 0.6375 %X 0.02245=0.01431
i 0.008 Pp =7 ’ e
(1032.5 — 350) x 75
Max As = 3353 + 0.01431 X 350 X 470 = 4625 mm? > 3690 mm? OK

b=1062.5 mm_

4 Ef
: =
= =
=t
628
‘ . e o o
' _ e o o

| 350mm_ |
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Example (7): In slab beam, The flange width was determine to be =1220 mm , the web width was bw=400

mm , and the slab thickness was hf= 100 mm . Design T- section to resist an external factored moment Mu=
1100 kN.m . Given: f’, _ ,; MPa and f, = 420 mPa, .

| b=1220 mm
|-‘ E—
i '
£
g
< E
As
! ' .




Solution

d 1s unknown
So choose a = hf = 100 mm

=
Asg fy =0.85f'cbhf
_085f'chhf 0.85 x21x 1220 x 100

= — 5185 mm?
>ft fy 420 mm

now calculate d from:
hf 100
Mu = @Mn = QAsft fy d—? = 0.9 x 5185 x 420 X d_T

d =661.24 mm

1- If we choose d > 661.24 mm (say 800 mm), in this case a < hf and
the section will be design as Rectangular section

- Mu 1100 x 106 1 es S
T @bd? 0.9 x 11220 x 8002 -
fy 420 &

= = = 23.
M= 085 fc 085x2l o
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1 2ZmR \ 1 2x23.53%x1565 |

p—a 1-— 1—W _ﬁ 1-— — 420 = 0.003906
As = pbd = 0.003906 x 1220 x 800 = 3812 mm?
Use 80 25 mm (8 X 490 = 3920 mm?)

3920 1.4
PW = m = 0.01225 > [0 & EO = 0.0033
Pmax = 0.6375 pb

25015
dt =d +—+—=825mm

i
B 0.85 600 825\

Pmax = 06375 X 53753 <6OO n 420) (800) = 001397
Max As = As; + P o bW d

(b — bw)h, (1220 — 400) x 100
Max As = ——+ p .. bwd = 5353 4+ 0.01397 x 400 x 800 = 7955 mm? > 3920 mm? OK

2- If we choose d < 661.24 mm, (say 800 mm) in this case a > hf and the

section will be design as T — section _. : .
(b —bw)h, (1220 — 400) X 100 T~
= = 3484.

Calculate As; =
alculate As, — 353

h 100
Mu, = @Asf fy (d — 7’”) = 0.9 X 3484.9 X 420 X (600 ~ T) = 72451 KN.m
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s~ Mu, = Mu — Mu, = 1100 — 724.51 = 375.49 KN.m

. Mu  37549x106 ) 5973
" @bd?2~ 0.9 x 400 x 6002

1 2mR 1 2 X 23.53 x 2.8973
p=a = 1—7 =ﬁ 1—\/1— 220 = 0.007573
As; = p bd = 0.007573 X 400 x 600 = 1817.5 mm?
Total As= As,+As,=1817.5+3484.9=5302.4 mm?
Use 8 @ 30 mm = 5648 mm?
b—116 —2 x ds 400 — 116 — 2 x 10
n= D+ s +1=n= 30 1 25 +1=58 =5
30 25
dt =d+—+—=6275mm
2 2
a=pmd=0.007573 x 23.53 X 600 = 106.9 mm
a 1069
= ,31 =085 - 125.8 mm §
dt — c 627.5 —125.8
et=< . >x0.003=< 1758 >X0003—001196&5 (OK)

2001 =1 (08 T.C
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Thank You..........
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The Type Of Slab
1-One-way slabs 2- Two-way floor systems 3-Flatslab 4- Waffleslab 5- Ribbed Slab

(a) Slab with beams




Prof. Dr. Haleem K. Hussain

2. One Way Slab:

————— T I R EY
LongerSpan - 9 > B ? } LB H
ShortSpan — |
Beam 1 Beam 1
N ‘/
S Beam 1 - S -

(a) (b)
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One way Slab Deflection

b=1000 mm
Main Reinforcement
/’J.f _,-""f /"/ / _/// > 4 /"/ / /./ 7
o / K EFELF /\‘/ - / d=h- 20-¢/2
v % % % @ =150 mm

Temp. and shrinkage -
reinforcement

One Way Slab Section
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2. Two Way Slab:

LongerSpan
ShortSpan

2 Ursl Wit Desegr Strp
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Design of One way slab

For simply supported slab the max. positive bending moment
+M= Wu In?

where wu = KN/m? :1n = clear span in short direction

While for continuous span the Moment at mid and support should be calculated
according to method of structures analysis. To find the Critical section the live
should arrange to the spans in different position to get the envelope of bending
moment Diagram as shown below:

Loading Cases

S
3 -—
gl
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y @ Y 9 Case 1
Max M due to Live load at =
WL
A — L . lk F . Case 2
MMax M due to Live load at =
? WL
ilillllAlllllA a4  Case 3

Max M due to Liive load at =

WL &
- kllllllllll!l* P —
Max M due to Live load at =

*111111*11111*111111* P
| Max M due to Delad Load :
| | |
| | | I
| 345 4+5 |
| A A :
' ' ' B.M envelope
s— b F = d 2,
| 1+5 | 2+5 | 1+5 |
Bending moment envelopes for the critical section when the WL/WD> (.75
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DL

WL/WD<0.75

SN N o~
N

Bending moment for the critical section Whel&N.L/WD <0.75
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............. To be Conti nued_% s
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ACI Code Coefficient Methods (ACI Item 6.5)

1. Members are prismatic.

2. Load are uniform ally distributed.

3. Live Load < 3 X Dead Load

4. There are at least two span.

5. The longer of the two adjacent spans does not exceed the shorter by more than 20

Percent (L < 1.2 S)

Mu = (coefficient) (Wu Sn*) = C, Wu Sn*
S, =clear span.

Mc
Mf = Mc-V*b/3 /

MT




-1/ Q /‘1
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24

e

N
Spanral Beam

Free End

Colu_mn//

-
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-1

| +1/14 L | +1/16 L | +1/16 ]
Spanral Beam | Sn || n | n |

-1M1 «1/11 -1/1 <1/11 -111
0 \ \
|
Free End +1I1y L +1/16 L +1/16 L]
| Sn | | n | n |

— +1/14 +1/16 +1/16
|

- Sn =L = Sn ==

B.M Factors
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Wu*S/2 1.15 Wu*S/2 Wu*S/2 Wu*S/2

Wu*S/2 Wu*S/2 Wu*S/2

Shear Force Factors
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Design Limitations of ACI Code.

Design Limitations of ACI Code.
1- minimum depth of Slab ( h) when Fy=420 Mpa for solid one way slab should
follow the ACI item 7.3.1.1 for normal concrete only

Support condition Minimum Thickness (h)

Simply Supported L/20
One End Continuous L/24
Both End Continuous L/28

Cantilever L/10

oy

For fy other than 420 MPa, these values shall be multip ied by (0.4 + fy/700)
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2- Deflection is to be checked when the slab supports are attached to construction likely to be damaged
by large deflections. Deflection limits are set by the ACI Code, Table 24.2.2.

3- It 1s preferable to choose slab depth to the nearest 10 mm.
4. Shear should be checked, although it does not usually control.
5-Concrete cover in slabs shall not be less than (20 mm) at surfaces not exposed to weather

or ground for bar dia. 36 mm and less, while concrete cover not less than 40 mm for bar greater than
36 mm in dia. ACI table 20.6.13.1

6-In structural one way slabs of uniform thickness, the minimum amount of reinforcement ( As min. in
the direction of the span shall not be less than that required for shrinkage and temperature

reinforcement (ACI Code, Sections 7.6.1 and 24.4.3).

7. The main reinforcement maximum spacing shall be the lesser of three times the slab
thickness ( 3 * h) and 450 mm . (ACI Code, Section 7.7.2.3).

8- In addition to main reinforcement, steel bars at right angles to the main mus '
additional steel is called secondary, distribution, shrinkage, or te@re reinforcement.

-
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Temperature and shrinkage reinforcement .

The minimum reinforcement should be equal or greater than: ACI 2019 24.4.3.2

p.. =0.0018

Max spacing of reinforcement should be greater than
1. 5xh ( h = slab thickness)
2. 450 mm

Choose the smaller of above value

The width of slab strip= 1000 mm
ASpin = P . x b x h=0.0018 X bXxh minimum shrinkage and temperature steel

e .
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Reinforcement Details

In continuous one-way slabs, the steel area of the main reinforcement is calculated for all
critical sections, at midspans, and at supports. There is two reinforcement system can be applied
1- Straight-bar.

2-Bent-bar, or trussed system.

straight and bent bars are placed alternately in the floor slab.

The location of bent points should be checked for flexural, shear, and development length
requirements.

S
3 -—
gl
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’ § F_
| | |
L1/4 L1/3 L2/3 L2/3
| | |
L1/7 | 0.125L1 01252 |
' LY I L2 |
N N
Straight Bar
\ | -
| | |
L1/4 L1/3 1213 1213
i \ Vi N 4
L1/7 | L5 124 | | L2/4
' L1 I L2 |
N N

Bent Bar
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Example (1):calculate the design moment of one way solid slab that has a total depth of

h=180 mm and is reinforced with 16 mm diameter bar spaced s =150 mm, used fc =21 MPa ,
ty =420 MPa

 pel000mm
416 mm at 150 mm
| A |
: i \ o } d=180- 20-16/2=152 mm
% v/ ’4 i ‘1 ) g

Temp. and Shrinkage
reinforcement




Sol.

)
d=h—concrte cover (20) — 5

16
d =180 — 20 — — = 152mm

2
Taking width strip = 1000 mm As/m 1000
A =1000 Ab
s/m= X S Ab S

A,=201 mm? (Ab for bar diameter = 16 mm)

Ab
As/m=1000 x —=1000 x 201/150 =1340 mm?
Check As_.=p ., Xbxh=0.0018 x 1000 x 180 = 270 mm?

_ fy 420
~ 0.85f'c 0.85x21

aculate 5, < B1(_ 600 \(dr) _ 085 ( 600 \ o o
cattiare o = \600 + fy)\d ) T 2353 \600 +420) 7 T

0.003 + ];—351 0.003 + %
and calculate p,,5r = \—————/pp = x 0.02127 = 0.01355

0.008 0.008
%

m = 23.53

AS, . = Pmax X b X d=0.01355 X% 1000 X 152 = 2059mm?
As/m= 270 mm? < As /m=1340 mm? < Asmax=2059 mm?
Tension Control @ = 0.9
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-Section Capacity ¢Mu

C=T

0.85f'cab = As fy
1340 x 420

4= 0.85 x 21 x 1000
OdMu = 0.8A4s X fy (d—g)
2

= 31.5mm

31.5
= 0.9 x 1370 X 420 x (152 — T)
=69 KN.m/m
Or
Mu = ¢ Rbd?
R=pfy(1-05pm)
P=37" 0.00882

R = 0.00882 x 420 x (1 — 0.5 x 0.00882 x 23.53)
= 3.32

Mu = ¢ Rbd? = 0.9 X 3.32 X 1000 x 1522

Mu =69 KN.m /m

&e

0.85fc

s|| & C=08sfcab

d-a/p

¢ —1s TAs Fy
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Example (2):Determine the allowable uniform live load of example (1) that can be applied on the simply
supported slab with span 4.9 m and carries a uniform dead load ( excluding self weight) of 4.8 KN/m? .

Sol.
oM, = 69 KN.m/m (example (1))
w, X L?
Mu = ¢ Mn =
Wu X 4.92
69 = ~ W, =23KN/m?

8
W,=12D.L+16L.L

Self weight of slab = h.b.1.yc = 0.18 X1 X 1 X 24 = 4.32 KN/m?
23 =12x(432+48)+ 1.6 xW,

W, = 7.54 KN /m?




Prof. Dr. Haleem K. Hussain

Example (3): Design a 3.65 m simply supported slab to carry a uniform dead load ( excluding self weight )
of 5.75 KN/m? and a uniform Live load of 4.8 KN/m? , normal concrete , fc =21 Mpa, fy= 420 Mpa.

v Main Reinf.

Sol.
% Minimum Slab thickness, fy = 420 Mpa and simply supported slab
L 3650

=20= 20 - 182.5mm (ACI code Table 7.3.1.1)
Use h = 190 mm
s Applied load T
Wu = 1.2DL + 1.6 WL
Self weight of slab = 0.19 X 1 X 1 X 24 = 4.56 KN /m? §

Wu = 1.2 x (4.56 + 5.75) + 1.6 x 4.8 = 20.05 KN/m/m

For 1 m strip width -

L? .652
Mu = Wu§ = 20.05 X = 33.39KN.m/m
) 12
d=h—20—§=190—20—7=164mm (use ¢ = 12mm Ab = 113 m2)
fy
=———= 23.53
M= 085f'c
Mu = ¢ Rbd?

Mu =
R = W assume Tension control ,use ¢ = 0.9 &"
33.39 x 10° -

= — 1_
0.9 X 1000 x 1642 379

\ Secondary reinf.

22




1 1
p=—
m fy
1

B | _2x2353x1379R ) _
P =7353 420 -

2mR

As/m = p.b.d = 0.00342 x 1000 X 164 = 561 mm?/m

As min.= 0.0018 x b X h = 0.0018 X 1000 X 190 = 342 mm?/m

B 600 dt 0.85 600
calculate p, = — || — (1) = 0.02127

m \600 + fy)\d ) ~ 23.53 \ 600 + 420
0.003 + %’ 0.003 + %
and calculate P00 = —ooo8 /PP 0,008 % 0.02127 = 0.01355

As ...= 0.01355x 1000 x 164 = 2222 mm?/m > As/m = 561 mm? (0K)

113
Ab = 113 mm? S = 1000xﬁ =201 mm

% Check maximum spacing 3Xhf =3 x190 = 570 mm or 6-171711
useS = 190 mmc/
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Secondary steel ( shrinkage and temperature reinforcement)

p.. = 0.0018
As min = 0.0018 X b X h = 00.0018 x 190 x 1000 = 342 mm?
If use $ 10mm Ab = 78 mm?

1000 x 78
S=T=228mm2/m < 5Xhf =5%x190 =950 mm < 450 mm (0K)

Use $10 mm at 220 mmc/c

Check the shear requirement

Wu XL
V,= B 20.05 x 3.65 = 36.59 KN /m
The critical section at d distance from the face of support
V d = Vu — Wu X d
= 35.59 — 20.05 x 0.164 = 33.3 KN/m

dVe= ¢ x(017+/f'ch.d) = 0.75% 0.17 x /21 x 1000 x 164 = 95.82 KN /m

u

Vud < ¢Vc (0K)
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®12 mm at 190 mm

VAN

190 mm

:
7

¢10 mm at 220 mm c/c
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Example
For Design Floor system One Way Sab

. .
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La La

=
. ==

One way slab
Lb/La >=2

Lb
Lb

Lb

Two way slab
Lb/La <2
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Example (4): Design the one way slab system shown in fig below , subjected to the superimposed
dead load 2 KN/m? and live load 3 KN / m? assume normal concrete , f'c =21 Mpa, and fy= 280 Mpa.

— [T @ S— T
[= 3
: =
o
&
= @ — e
! ! !
! ! !
; ! ! Column Dim. =350 x350 mm
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Sol.

R/

*¢ Minimum Slab thickness, ( assume one end continuous) and Fy = 280 Mpa
h=1L1/24 = 4000/24 = 166.6 mm (ACI code Table 7.3.1.1)

Use h =170 mm

use ¢ = 12 mm Ab = 113 m2

o 12
d=h=-20--=170-20-— = 144mm

/7

s Applied load

Wu = 1.2DL + 1.6 WL

Self weight of slab = 0.17 X 1 X 1 X 24 = 4.08 KN /m?

Wu=12x(408+2) +1.6 x 3=121KN/m/m

fy 280 . Main Reinf.

= 085fc_ 085 x25 >0 ]

m

\ o
Y

7
% ® " 20 mm

170

y _
\ Secondary reinf.
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124 -1/1 1/11 -1111 -1/10 -1/24

\‘Q(N.mm M=16.12 =14.84 KN.m/m M=14.84 KNAm |\ M=16.12 KN.m/m / P s

A4

b +1/14 +1/16 +1/14

pandral Beam M=11.51 KN.m/m M=10.08 KN.m/m M=11.51 KN.m/m
| Ln=3.65m | Ln=3.65 m | Ln=3.65m |

% Moment Calculation
—External span

- —— - — — —----

1 1
1 — External Negative Moment = —M = (— ﬂ) Wu In? = (— ﬂ) X 12.1 X 3.652 = 6.72 KN.m/m
1 1
2 — Positive Moment = +M = ~1a Wu ln? = 12 X 12.1 X 3.652 = 11.51 KN.m/m
_ 1 1
3 — Internal Negative Moment = —M = —1—0> Wu ln? = <— 1—0> X 12.1 X 3.652 = 16.12 KN.m/m
—Interior span
1 1
1 — Internal Negative Moment = —M = _H> Wu In? = <— H) X12.1 X 3.652 ==
1 1 S
2 — Positive Moment = +M = T Wu ln? = T x 12.1 X 3.652,.=10.08 KN.m/m
_ 1 1 o
3 — Internal Negative Moment = —M = BET] Wu ln? = ~ 17 X 12.1 X 3.652 = 14.65 KN.m/m
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External Span Internal Span
No. Details M +M - M -M +M
Exterior supp. Mid Span Interior supp. | Exterior supp. | Exterior supp.

1 Mu * 10% ( N.mm) 6.72 11.51 16.12 14.65 10.08
2 b (mm) 1000 1000 1000 1000 1000

3 | d(mm) 144 144 144 144 144

4 R=Mu/(dpbd?) 0.36 0.617 0.863 0.785 0.54

5 p=1/m(1—(1—\/1—2mR/fy) 0.001299 0.002243 0.00316 0.001959
6 | As=p.b.d (mm?) 187 323 456 413 282

7 [;rinn;iz N g(')bl'g (mm?) 306 306 306 306 306

8 As Provided ( choosed) 306 306 456 413 306

9 S=1000*Ab/As ( mm) 369 369 247 273 369

10 SOTZ’S‘E f: £=5 10 450 450 450 450 450

11 S ( choosed) 369 369 247 273 369

12 I(Jj:: i‘l’z‘:ﬁl S) 360 360 240 270 360
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Due to fy = 280 MPa (from ACI code 24.4.3.2)

Pmin = 0.0018

As shrinkage and Temperature = p_,. X b X h=0.018 X 1000 x 170 = 306 mm?/m
Use ¢ 10 mm ( Ab = 78 mm?)

o 1000 x 78

288
Check Maximum spacing for shrinkage and temperature steel

Sy = O Xh=5x170=850mm or 450 < s,
Use $ 10 mm 220mmc/c

= 229 mm

Sax= 5 Xh=15 X 170 =850mm or 450 < s max




Prof. Dr. Haleem K. Hussain

Check for Shear:
WuLn
Vu = 1.15 >

3.65
Vu=115x%x12.1X — = 2539 KN/m

Vu,d = Vu—wu X d = 25.39 — 12.1 x 0.144 = 23.65KN /m
Ve = ¢x(0.17/Fcbh.d) = 0.75% 0.17 x v21 x 1000 X 144 = 84.12 KN /m

Vud < ¢Vc ( OK section safe for shear.)

Reinforcement Details

1- Bent Bar

A-Additional steel at exterior support ( -M)

If we assume that 50% of positive steel will bent then:

As provided will be 912 at 660 mm c/c
1000 x 113

— = 2 - -
As/m 660 171 mm?/m ~
As (required)/m =340 mm?2/m "
AS rovided = 340 — 171 = 169 o

then As additional = As .-

1000 x 113
S = 169 = 668mm use = 12@660mmc/c
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B-Additional steel at Interior support ( -M)
If we assume that 50% of positive steel will bent then:

As provided will be ¢12 at 660 mm c/c from left side :
i _ 1000 x 113 17 ,
s/m = 660 = mm-/m

So the Total As provided from both side =2X171 = 342 mm?*/m

As (required)/m =456 mm?/m

then As additional = As req. — As provided = 456-342=114 mm?/m
_ 1000 x 113

114
use = 012@990 mm c/c

= 991mm

S
3 -—
gl
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Example (5): From previous Ex. (4) Design the interior beams shown in fig below , where the
slabs is subjected to the superimposed dead load 2 KN/m? and live load 3 KN / m? normal

concrete , f'c =21 mPa, and fy= 280 mPa.

Sol.
1- Interior Beam

-Self weight of drop part of beam =?

Assume Wu ( self weight= 5 KN/m) (check Later)
Wu=12WD + 1.6 WL

Wu slab = 12.1KN /m?

Wu (Load on beam from slab/m)

= 12.1 X4 =48.4KN/m

Wu (onbeam) = 1.2 X 5+ 484 =544 KN/m

-Calculate Moments ( Using ACI code coefficient)

8500

8500

_ — @ —

8500

8500

®
4000

|
_-+E1-_-E .

!
|
|
|
!31
|
|
|

B1




Prof. Dr. Haleem K. Hussain

-1/16

C— +1/14 +1/14
Sn Sn
) == )
M = Cf Wu Sn? Sn = 85-0.35=28.15m

1
Negative M at exterior support = (— E) X 54.4 X 8.152 = 225.8 KN.m

1
Positive M at mid span = <E> X 54.4 X 8.152 = 258.1 KN.m

1
Negative M at interior support = (— 5) X 54.4 X 8.152 = 401.49 KN.m

Flexural Design

I A T
M= 085fc 085x21
pb = (or you can assume p = 0.5 pmax)
B4 600 dt dt
Pp=— — =1
m \600+ fy/\ d d
085 o 600 b e
= 15.60 ~ Goo+ 280’ ~ -

used = 0.5p b = 0.01846
R=pfy(1—-05pm)=0.01846 x 280 x (1 — 0.5 % 0.01846 x 15.69) =
Mu = ¢ Rbd?

-
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Mu
d? = m = 401.49 x 10°%/(0.9 X 4.42 x 350)

d = 537 mm

h=537+90 =627mm  (two layer of steel)
Use b X h =350 X 630 mm

Check the self weigh of beam

Wy=12Wo (self Wt.)

Wpy(self wt.) =1.2 x0.35 X% (0.63 —0.17) = 4.64 KN/m
So the correct Wu = 48.4 + 4.64 = 53.04KN/m

Check The ACI code requirement for Minimum Depth of Beam ( deflection Control) ACI Table 9.3.1.1
Smply supported = L/16

One end Continuous = L/18.5

Both end Continuous =L/21

Cantilever =L/8"

If fy not equal 420 MPa then h min. shall be multiplied by factor =( 0.4+fy/700) for normal concrete
-And if we use lightweight concrete ( (14.4 to 18.4 KN/m?) the above value of h shall be ' -

h-J
3 -—
gl

multiplied with greater of :
1- 1.65-0.00035c (»c= concrete unit weight)
2- 1.09
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In this example the span is one end continuous

ho = /B —8500—460
mn =185 185 "
but Fy not equal 420 Mpa

So f = (0.4 + 280/700) = 0.8

Corrected h iy _og 460 _36s™Mm < hused = 630mm.

Note: The moment should be corrected according to the modified Wu

M=220.2 KN.m M=391.4 KN.m M=391.4 KN.m M=220.2 KN.m
-1/16 /-11‘1 -1/9 -1/16
Column_— +1/14 +1/14
IN M=251.6 KN.m N M=251.6 KN.m N
350 8150 350) 8150 350)
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Beams and Column Moment Calculation
- By using substitute frame method ( Moment distribution method)

3200mm

4000mm

A500mm A500mm

A500mm A500mm
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Calculate The stiffness of members at each node

El
K=—
L
When use the same concrete properties for whole structure E will be same and constant for all members then :
K I
L

K = stiffness of member ( mm3)
[ = moment of Inertia ( mm#)
L = length of member ( mm)

bh3 350 x 6303

= = — 6 4
For beams I, 12 7 72.93 X 10° mm
P — I 7293 % 106 _ 858 x 10°
L 8500
03
Stif fness of Upper Column = 350 X 7 - 12.505 x 10® mm*
K Ic 12.505 x 10° — 3908 x 103 3
“The” T 3200 OO i
L Col K _ 125lolaiee 312.6 X 103 mm3
ower Column Kc = 1000 = : mm
Ib
Distributed factor (DF) or ~ Relative stiffness= (77 Ic i3 )

E+E+2
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Relati tiff forb tB = S = 0.355
clative stiliness for beams at B = 5905 x 103 + 312.6 X 103 + 2 x 858 x 103
_ _ 858 x 103
Relative stiffness for beams at A&C = = 0.55

390.5 X 103+ 312.6 x 103 + 858 x 103

= 53.04 X 852 _ 319.35 KN
12 7 12 > i

3 x4
Where WL/WD = 0.43 < 0.75
ere WL/WD < 408 +2) x 4 + 3.864 <

No need to Use the loading case for Envelope

L2

Fixed end Moment =

0.55 0.355 | 0.355 0.55

+319.35 -319.35 | +319.35 -319.34

-175.64 o| o +175.64

0 «— T -87.82 |+87.82 — B 0

+143.71 _407.17 | +407.17 -143.71
203.94 - .203.94

M positive =

wul? <M1+M2> _ 53.04 x 852 (143. b
8 2 - 8 h
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wul M2-—-M1

Rc = Ra = > L
53.04 x85 407.17 —143.71
= — = 194.42 KN
2 8.5
Wul M2-—- M1
Rb1 = Rb2 = i
2 L
= 225.42 + 30.99 = 256.43 KN
wu X x 350
Vu at face of support A = Ra — = 194.42 — 53.04 x 0.175 = 185.14KN (x = - = 0.175)
wu X x

= 256.43 — 53.04 x 0.175 = 247.15KN
53.04 x 0.1752

Vu at face of support B = Rb —

Moment at face of support A = 194.42 X 0.175 - 143.71 — > = 110.5 KN.m
53.04 X 0.1752
Moment at face of support B = 256.43 X 0.175 - 407.17 — > = 363.11 KN.m

To calculate the positive moment :

Shear force = 0at X
194.42 x 8.5

X = 19442 1 256.43
wu X
Mu=0= Raxx —143.71 —

x=083m

= 3.66m

xz

= 194.42x — 143.71 — 53.04x2/_2

3.662
Find the max positive moment = Ra X x — 143.71 — 53.04 X
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M=143.71KN.m M=407.17KN.m M=143.71KN.m

N %

o AN S

1 |

Ra Rb Rb Rc

e .
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M=143.71KN.m

AN 4

M=407.17KN.m
M=143.71KN.m

P

M=251.6 KN.m

M=251.6 KN.m

ol 8150 B$dl 8150 <)
a b C
B.M.D

Vu=194.42KN ,  r_185.14KN

N

Vu=256.43KN

VYuf=247.15KN Vu=194.42KN

.

3660

5]

8150

las0l Bsal

8150

Dimension in mm

S.F.D
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. M=407.17KN.m
M=143.71KN.m C——

| \M=110.5KN.m |\ M=363.11KN.m M=110.5KN.m

l \\ /\% | W |

| /'\/\/'\ \!/ N

! 830

t M=212.62 KN.m M=212.62 KN.m t
|3|0| 8150 |3$0| 8150 |3|0|

Ra Rb Rc

B.M.D .

Dimension in mm
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Design of interior Beam ( B2) ( using ACI Coefficient Methods)

M=220.2 KN.m M=391.4 KN.m M=39"1.4 KN.m M=220.2 KN.m
-1/16 —1I§I -17/9 / -1/16
T // \\ =
- T .
o~ M=251.6 KIN.m ™~ M=251.6 KN.m ™
Iasal 8150 lasal 8150 lasgl

-Negative Moment

1 — Exterior support (—M = 220.2KN.m)

A PR o 2202x10°
= Mu/Ce by R = 09x350x5652  ~
m = 15.69

1 2mR
p=—x(1- 1—}"—y)

1
15.69

15
Xl 1— [1-2x%x219X% = 0.008371 > in.= — = 0.005
\/ >80 pmin e

As = pbd = 0.008371 x 350 X 565 = 1655 mm?
Use 4 ¢ 25 mm = 1964 mm?
(or you canuse 6 ¢ 20 = 1884 mm? in two layer then we have to coqcrgcted the calctll

Check spacing e
b—116 — 2ds S
n= \
D+S

_350-116-20 ok
- e = cafitir (O



2 — Interior support (—M = 391.4KN.m)
Mu

R =

¢ bd?
Assume two layer of steel bar
d =630 —90 = 540 mm

As = pbd = 0.01766 x 350 x 540 = 3337 mm?
Use 8 p25mm = 3928 mm? (two layer)
(or youcanuse 4 ¢ 25 + 4 ¢ 22 = 3484mm? in two layer)
Check spacing
b—116 — 2ds

D+S
350 - 116 — 20

25+ 25

n=

+ 1= 5.25 Bar (0K)

n 391.4x 106 126
0.9 %350 x 5402
m = 15.69
1 " . 2mR
p = — J— R
m fy
N & s | B 1 2><426><15'69 = 0.01766 > pmin.=
~ 15.69 ' 280 |~ prm. =

14—0005
fy
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Check for maximum stedl ratio

B1( 600 at
calculate Pp =" (600+fy) ( d )

0.003+%
and calculate p,4 = ~oos /PP

d = 540 mm,dt = 565 mm
pb = 0.85/15.69 x (600/(600 + 280)) x (565/540) = 0.03865

= (0'003 i 202080000) % ob = 0.55 X pb = 0.02126
b, = 002126 > p=0.01766 > pmin = 0.005 (0K)

S
3 -—
gl




Positive Moment (M = 251.6KN.m)

We have T section ——— — to find the be

1— be =16t + bw =16 X 170 + 350 = 3070mm
L 8500

2 — be =Z=T=2125mm

3— be=S= 4000mm
Choose be = 2125 mm

Assume block stress depth =a = h =170 mm
Mu

= o bd?

Assume two layer of steel bar

d = 630 —90 = 540 mm

R = 251.6 X 10%/( 0.9 x 2125 x 5402) = 0.45

m = 15.69
_1>< ) ’ 2mR
P~ fy
! x| 1 1 2><045><1' = 0.001632 < = '4—0005
~ 15.69 ' 280 | Pmin

As = p...bd = 0.005 x 350 x 540 = 945 mm? -
a= p.m.d=0.005x 15.69 x 540 = 42.8 mm < 170 mm (design%ﬂ

Use 2¢ 25 mm = 982mm? Cone layer)

Prof. Dr. Haleem K. Hussain

gular section )

-
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m 28m 2.8m 21'm
I N —— e b i |
1.2m L 2m |:|_2m | [ 1Zm |
8.15m 8.5m
NS PR B 4O
Bent Beams
40225 2025 8025
_ Py 7 = o _ P
e « . b S e e E' - .
o 2 B
¥ 20125 * | 2025 ¥ | 2025
L350 | |_350 | 350 |
Beam B2 Beam B2 Beam B3

Section A-A Section B-B Section C-C
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Introduction

When a simple beam is loaded, as shown in Fig. Below , bending moments and shear forces develop along the beam. To
carry the loads safely, the beam must be designed for both types of forces. Flexural design is considered first to establish the
dimensions of the beam section and the main reinforcement needed, as explained in the previous chapters.

The beam is then designed for shear. If shear reinforcement is not provided, shear failure may occur. Shear failure is
characterized by small deflections and lack of ductility, giving little or no warning before failure. On the other hand,
flexural failure is characterized by a gradual increase in deflection and cracking, thus giving warning before total failure.
This is due to the ACI Code limitation on flexural reinforcement. The design for shear must ensure that shear failure does

not occur before flexural failure.

SHEAR STRESSES IN CONCRETE BEAMS

The general formula for the shear stress in a homogeneous beam is

VQ

Where:
V = total shear at section considered

Q=statical moment about neutral axis of that portion of cross section lying between line through point in question parallel to

neutral axis and nearest face, upper or lower, of beam. —
I=moment of inertia of cross section about neutral axis.

b=width of beam at given point.

The distribution of bending and shear stresses according to elastic theory for a homogeneous rectangular beam is as shown

in Fig. Below. The bending stresses are calculated from the flexural
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: |
+—1 L —
5 | $ ! |
formula f = > whereas the shear Mo oL |
2
- v
stress at any point is calculated by the ’ Y |
shear formula of Eq.1. | |
. . vy l
The maximum shear stress is at the v i e '
neutral axis and is equal to
(average)
1.5va (average shear), ‘ ——-I Ve
S — e
Wh v = 1 i l
ere: = - = —
max 2 a 2bh Vinax ™ Vg
l N.A. ] -
S Tl
< Bending Shear
stresses stresses

Fige5.'19
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bbbt bbb bbb v bbb bbb

[~ [

Tension trajectories
——— Compression trajectories
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_ . Parabolic Parabolic
The shear stress curve is parabolic. For a
singly reinforced concrete beam, the e . =
distribution of shear stress above the neutral NA Aq NA
axis is a parabolic curve. Below the neutral A . ﬂ:\_q B=—=0
s S
axis, the maximum shear stress is maintained T e
. ™ *—Vimox 1 Veax F‘
down to the level of the tension steel, because
there is no change in the tensile force down to (a) (b)
this point and the concrete in tension is ,
Parabolic
neglected. The shear stress below the tension
steel is zero. For doubly reinforced and T- e MMA""_——":"
A 5
sections, the distribution of shear stresses is as — T TR S R V. NA _ ——
N A, A
shown in Fig. RS I P —
— Vingy [ > Vg [
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It can be observed that almost all the shear force is resisted by the web, whereas the flange resists a very small percentage; in
most practical problems, the shear capacity of the flange is neglected.

Referring to Fig. 1 and taking any portion of the beam dx, the bending moments at both ends of the element, M, and M,, are
not equal. Because M, >M, and to maintain the equilibrium of the beam portion dx, the compression force C, must be greater
than C, (Fig. 1). Consequently, a shear stress v develops along any horizontal section a—a, or b—b, (Fig. 1a). The normal and
shear stresses on a small element at levels a—a, and b—b, are shown in Fig. 1b. Notice that the normal stress at the level of the
neutral axis b—b, is zero, whereas the shear stress is at maximum.

The horizontal shear stress is equal to the vertical shear stress, as shown in Fig. 1b. When the normal stress f is zero or low,
a case of pure shear may occur. In this case, the maximum tensile stress f, acts at 450 (Fig. 1c).

The tensile stresses are equivalent to the principal stresses, as shown in Fig. 5.4d. Such principal stresses are traditionally
called diagonal tension stresses. When the diagonal tension stresses reach the tensile strength of concrete, a diagonal crack
develops. This brief analysis explains the concept of diagonal tension and diagonal cracking. The actual behavior is more
complex, and it is affected by other factors. For the combined action of shear and normal stresses at any point in a beam, the

maximum and minimum diagonal tension (principal stresses) f, are given by the equation

1 _ /1)
fo=57+ <§f> + v?

Where:
f = intensity of normal stress due to bending
v = shear stress
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The shear failure in a concrete beam £
is most likely to occur where shear e Ef a,

1
forces are at maximum, generally A N
near the supports of the member. The
first evidence of impending failure is h l I = Shear stress
the formation of diagonal cracks. < dx > My > M,

(a)

Shear distribution

Fig. 1

(a) Forces and stresses along depth of section,
(b) Normal and shear stresses,

(c) Pure shear, and

2 9 At section At section
(d) Diagonal tension. iy b—b,
>
Ji f
S
& Diagonal
i crack

«— <

F J; «——— Diagonal
¥ i tension

(<} ()
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3. BEHAVIOR OF BEAMS WITHOUT SHEAR REINFORCEMENT

Concrete is weak in tension, and the beam will collapse if proper reinforcement is not provided. The tensile stresses develop
in beams due to axial tension, bending, shear, torsion, or a combination of these forces. The location of cracks in the
concrete beam depends on the direction of principal stresses. For the combined action of normal stresses and shear stresses,
maximum diagonal tension may occur at about a distance d from the face of the support.

The behavior of reinforced concrete beams with and without shear reinforcement tested under increasing load was discussed
in chapter of analysis of beam under flexural. In the tested beams, vertical flexural cracks developed at the section of

maximum bending moment when the tensile stresses in concrete exceeded the modulus of rupture of concrete, or f, =

7.5 A/ f/. Inclined cracks in the web developed at a later stage at a location very close to the support.

An inclined crack occurring in a beam that was previously uncracked is generally referred to as a web-shear crack. If the
inclined crack starts at the top of an existing flexural crack and propagates into the beam, the crack is referred to as flexural-
shear crack (Fig. 2). Web-shear cracks occur in beams with thin webs in regions with high shear and low moment. They are
relatively uncommon cracks and may occur near the inflection points of continuous beams or adjacent to the supports of

simple beams.

Flexural-shear cracks are the most common type found in reinforced concrete beams. A flexu tends vertically into

the beam; then the inclined crack forms, starting from the top of the beam:bwléen shear stresse

regions of high shear stresses, beams must be reinforced by stirrups or bms to produce ductile beams tha
rupture at a failure. -
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|
< -

(@) (b)

N
?\§

Fig. 2 Shear failure:

(a) General form,

(b) web-shear crack,

(c) Flexural-shear crack, V
(d) Analysis of forces l

involved in shear
V,= sfhear resistance, Brinclpal
V, = interface shear, tensile
V= dowel force. stresses

Initial flexural }47 S— »
crack

) (d)
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Figure 3 Typical Support Conditions for Locating Factored Shear Force V|,
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4. MOMENT EFFECT ON SHEAR STRENGTH

In simply supported beams under uniformly distributed load, the midspan section is subjected to a large bending moment and
zero or small shear, whereas sections near the ends are subjected to large shear and small bending moments . The shear and
moment values are both high near the intermediate supports of a continuous beam. At a location of large shear force and
small bending moment, there will be little flexural cracking, and an average stress v is equal to V/bd.

The diagonal tensile stresses are inclined at about 450 (Fig. 1¢). Diagonal cracks can be expected when the diagonal tensile

stress in the vicinity of the neutral axis reaches or exceeds the tensile strength of concrete. In general, the factored shear

strength varies between 3.5 \/f. and 5./f,. After completing a large number of beam tests on shear and diagonal tension, it

was found that in regions with large shear and small moment, diagonal tension cracks were formed at an average shear force

of:

V. = 3.5\/f.b,d
where b, 1s the width of the web in a T-section or the width of a rectangular section and d is the effective depth of the beam.
In locations where shear forces and bending moments are high, flexural cracks are formed first. At a later stage, some cracks
bend in a diagonal direction when the diagonal tension stress at the upper end of such cracks exceeds the tensile strength of

concrete. Given the presence of large moments on a beam, for which adequate reinforceme ovided, the nominal shear

force at which diagonal tension cracks develop is given by: ~

V. =19 AJ/f/b,d F' e
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This value is a little more than half the value in last Eq. when bending moment is very small. This means that large
bending moments reduce the value of shear stress for which cracking occurs. The following equation has been

suggested to predict the nominal shear stress at which a diagonal crack is expected:

v, = bWLd = (1.9 /f! + 2500 p%d) < 354/f!

5. BEAMS WITH SHEAR REINFORCEMENT

Different types of shear reinforcement may be used:

1. Stirrups, which can be placed either perpendicular to the longitudinal reinforcement or inclined, usually making
a 450 angle and welded to the main longitudinal reinforcement. Vertical stirrups, using no. 3 (10 mm) or no. 4
(12 mm) U-shaped bars, are the most commonly used shear reinforcement in beams (Fig. 4a).

2. Bent bars, which are part of the longitudinal reinforcement, bent up (where they are no longer needed) at an
angle of 300 to 600, usually at 450.

3. Combinations of stirrups and bent bars.

4. Welded wire fabric with wires perpendicular to the axis of the member.

5. Spirals, circular ties, or hoops in circular sections, as columns. .. m
-
The shear strength of a reinforced concrete beam is increased byﬁc of shear reinforcement.

formation of diagonal tension cracks, shear reinforcement contribute

ry little to the shear resistance. After

diagonal cracks have
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developed, shear reinforcement augments the shear resistance of a beam, and a redistribution of internal forces occurs
at the cracked section. When the amount of shear reinforcement provided is small, failure due to yielding of web steel
may be expected, but if the amount of shear reinforcement is too high, a shear—compression failure may be expected,
which should be avoided.

Concrete, stirrups, and bent bars act together to resist transverse shear. The concrete, by virtue of its high
compressive strength, acts as the diagonal compression member of a lattice girder system, where the stirrups act as
vertical tension members. The diagonal compression force is such that its vertical component is equal to the tension
force in the stirrup. Bent-up reinforcement acts also as tension members in a truss, as shown in Fig. 4.

In general, the contribution of shear reinforcement to the shear strength of a reinforced concrete beam can be
described as follows:

1. It resists part of the shear, V.

2. It increases the magnitude of the interface shear, V, , by resisting the growth of the inclined crack.

3. It increases the dowel force, V (Fig. 2), in the longitudinal bars.

4. The confining action of the stirrups on the compression concrete may increase its strength.

5. The confining action of stirrups on the concrete increases the rotation capacity of plastic hinges that develop in

indeterminate structures at maximum load and increases the length over.which yielding tak
-]

The total nominal shear strength of beams with shear reinforcement is due partly to the shear streng
to the concrete, V_, and partly to the shear strength contributed by the she

nforcement, V:
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~ P ' 4% U-shaped
T el £7 (hic 559
O -/ L2 stirrup
Vo = Vo + Vi sy Sy 157 | &
o/ i S S
P / ; /
The shear force Vu produced by factored 7 4 / 7% 7
loads must be less than or equal to the total
nominal shear strength V , or \
W< oV = ¢ (K+ 1) '
where V, =1.2 V, +1.6 V; and ¢=0.75. € i

d (b
Distributed load ©
poe ]
IR EEEE AR t '
g /’é?;r’f(‘\; %
J | Fig. 4

(c)
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An expression for V, may be developed from the truss analogy (Fig. 4). For a 450 crack and a series of inclined
stirrups or bent bars, the vertical shear force V| resisted by shear reinforcement 1s equal to the sum of the vertical
components of the tensile forces developed in the inclined bars.
Therefore,

Vi = nA, fyr sina Eq.?2
where A, is the area of shear reinforcement with a spacing s and f,; is the yield strength of shear reinforcement; ns is
defined as the distance aa,a,:

o {a1a4 = aaq tan 45 o (fromtriangle a a,a,)
a,a, = a;a, tan a (fromtriangle a;a,a,)
n*xs=aa; +aqa,
= d(cot 45° + cota) = d(1 + cot a)

n =—=(1 + cota)

S
Substituting this value in Eq.2 gives
A d A
Ve = vgyt sina(l + cota) = vgyt (sina + cos a)
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For the case of vertical stirrups, @ =900 and

A, fied A, fied
Vs=v5y or § = vVSy

Eq.3

In the case of T-sections, b is replaced by the width of web bw in all shear equations. When a =450, Eq.3 becomes

Ay ford A, fed
V, = 1.4 vIyed) g = 1.4( v Jye )
S Vs

For a single bent bar or group of parallel bars in one position, the shearing force resisted by steel 1s

Vs

V. = A sina orAv = ———
s v ot fye sina

For a =45°,

Vs
Av = 1.4 (—

e S—_
— - —
For circular sections, mainly in columns, V, will be computed from ﬁ?g (d = 0.8 x diameter), a -

times the area of the bar in a circular tie, hoop, or spiral).

-




6. ACI CODE SHEAR DESIGN REQUIREMENTS

6.1 Critical Section for Nominal Shear Strength Calculation

The ACI Code, Section 9.4.3.2, permits taking the critical section for nominal shear strength calculation at a distance
d from the face of the support. This recommendation is based on the fact that the first inclined crack is likely to form
within the shear span of the beam at some distance d away from the support. This critical section is permitted on the
condition that the support reaction introduces compression into the end region, loads are applied at or near the top of
the member, and no concentrated load occurs between the face of the support and the location of the critical section.
The Code also specifies that shear reinforcement must be provided between the face of the support and the distance d
using the same reinforcement adopted for the critical section.

6.2 Minimum Area of Shear Reinforcement

The presence of shear reinforcement in a concrete beam restrains the growth of inclined cracking. Moreover, ductility
is increased, and a warning of failure 1s provided. If shear reinforcement is not provided, brittle failure will occur
without warning. Accordingly, a minimum area of shear reinforcement is specified by the Code. The ACI Code,

Section 9.6.3.3, requires all stirrups to have a minimum shear reinforcement area, Av, equal to:

Ay min = greater of <
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where b is the width of the web and Sis the spacing of the stirrups. The minimum amount of shear reinforcement is
required whenever V exceeds ¢V _/ 2, except in:

1. Slabs and footings.

2. Concrete floor joist construction.

3. Beams where the total depth (h) does not exceed 10 in.(250 mm), 2.5 times the flange thickness for

T-shaped flanged sections, or one-half the web width, whichever is greatest.

4. The beam is integrated with slab, h not greater 24 in.(600 mm) and not greater than the larger of 2.5 times the
thickness of the flange and 0.5 times the width of the web.

T 'iﬁﬁl- 4
: B .

Shear Failure
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6.3 Maximum Shear Carried by Web Reinforcement Vs
To prevent a shear—compression failure, where the concrete may crush due to high shear and compressive stresses in the

critical region on top of a diagonal crack, the ACI Code, Section 22.5.1.2, requires that V shall not exceed

(0.66 \/ﬁ ) b, d. If V exceeds this value, the section should be increased.

6.4 Maximum Spacing of Stirrups

To ensure that a diagonal crack will always be intersected by at least one stirrup. Maximum spacing of legs of shear

reinforcement along the length of the member and across the width of the member shall be in accordance with the ACI Code,

Table 9.7.6.2.2.

Table 9.7.6.2.2—Maximum spacing of legs of shear

reinforcement
Maximum s, mm
Nonprestressed beam Prestressed beam
Required Along Across Along Across
| length width length width
di2 d 3h/4 3h/2
<033 Jfb.d Lesser
of: 600 -
a4 a2 3h/8 3h/4
- D.BZJ_E‘!:,H Lesser
of: 300
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This 1s based on the assumption that a diagonal crack develops at 45° and extends a horizontal distance of about d. In

regions of high shear, where Vs exceeds (0.33\/E )b,, d, the maximum spacing between stirrups must not exceed d/4.

This limitation is necessary to ensure that the diagonal crack will be intersected by at least three stirrups. When V|

exceeds the maximum value of (0.66,/f.)b,, d, this limitation of maximum stirrup spacing does not apply, and the
dimensions of the concrete cross section should be increased.
A second limitation for the maximum spacing of stirrups may also be obtained from the condition of minimum area

of shear reinforcement. A minimum A, is obtained when the spacing s is maximum.
A third limitation for maximum spacing is 600 mm. when Vs < (0.33\/E ) b, d and 300mm. when V_ is greater than

(0.33\/E )b,,d but less than or equal to (0.66\/ﬁ )b,,d. The least value of all maximum spacing must be adopted. The
ACI Code maximum spacing requirement ensures closely spaced stirrups that hold the longitudinal tension steel in
place within the beam, thereby increasing their dowel capacity, V, (Fig. 5.5).

6.5 DESIGN OF VERTICAL STIRRUPS

Stirrups are needed when Vu > ¢ Vc. Minimum stirrups are used when Vu is greater than 0.5 ¢pVc but less than ¢ V.

This is achieved by using no.3 (10 mm) stirrups placed at maximum spacing. When Vu 1s g Irrups
must be provided. The spacing of stirrups may be less than the maxim@ng and can be calcu
_ Av f ytd
Vs

=

S
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T

Ly W a = = = - & & &
135° bend 1807 bend Two-leg stirTups
el
4 H o | - L -
Flgure Stlrrup types: i x = 6d,, for #5 and smaller
strirrups
= x = 12dy, for #6, 7, 8 stirrups.
(a)U-stirrups enclosing 12t B 4. 7 8 st
. . ¥ = stirmmup closc _to extreme
longitudinal bars, anchorage | fiber, according to
. = » = = n_ = = = _L -
lengths, and closed stirrups; K
Closed stirtup 90 bend
. . Cax)
(b) Multi leg stirrups; and
: : | =
(¢) Spliced stirrups. |
Four-leg stirrup Four-leg stirrup Three-leg stirrup
(&)

~

= ].3121

(c)




U stirrup with 135-

hangers

fl

Prof. Dr. Haleem K. Hussain

Open stirrups for beams with negligible torsion (ACI 11.5.1)

yin

(a)

(b)

(c)

(d)

Closed stirrups for beams with significant torsion (see ACI 11.5.2.1)

>

W)

not less
than
1.3

()

concrete confinement

one side \

&

(h)

concrete confinement

one side \

These types of
stirrups are not
satisfactory for
members designed

for seismic forces.

Types of stirrups.

(g)

concrete confinement

/ both sides

)]
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: Refer to 25.3 Refer to 25.3:

Stirrup reintorcement

@ ’QA—Q

0 mm | [~y 0 mm
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7. DESIGN PROCEDURE ACCORDING ACI-2019
The design procedure for shear using vertical stirrups according to the ACI Code can be summarized as
follows:
1. Calculate the factored shearing force, V,,, from the applied factored forces acting on the structural member.
The critical design shear value is at a section located at a distance d from the face of the support.

Vu

Let Vn = E

2. Calculate V. by:

0.17A+/f/ b,, d Eq.
forA, = Aymin V. = either of { VI b E a}

0.66 A (p,)Y3f! b,d Eq.b
for A, < Aymin Ve =0.66 A4 A (p,)Y3 VS by, d Eq.c

And shall consider the following :
V. <042 A./f. b, d.

IS = \/1+0004d & -
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3. Calculate 0.083A./f. b,d =05V, ......... ,Eq.a
4. a IfV, < 05V,gqq  no shear reinforcement is needed.

b. If 0.5V, gqa < Vi <V, minimum shear reinforcement is required.
Can use no.3 (dia.10 mm) U-stirrups spaced at maximum spacing, as explained in step 8.
c. If V, > V., shear reinforcement must be provided according to steps 5 through 8.

5.1f V,, >V, calculate the shear to be carried by shear reinforcement:

V,=V. + Vs or Vs =V,-V,

S
3 -—
gl




6. Calculate:

Ver = 0.33./f! b,d and Vg, =0.66+/f b,d=2Vy then:
If Vs >V, increasethe dimensions of the section.

If Vs <V, proceed in the design

7. Calculate the stirrups spacing based on

A d
Sy = v i yt
Vs
8. Determine the maximum spacing allowed by the ACI Code. The maximum spacing is the least of S;, S, and S3:
where
S, =2<600mm, if Vs < Vey or S, =5<300mm, if Vs > Vg

i Av fyt )

S; = smaller of 0.062v e bw ’
Av fyt

| O35S

then, Smax = Min (81,5, and S3) (Pr
9. The ACI Code did not specify a minimum spacing. Under no

tical value).
nditions, a practical minimum
assumed to be equal to 75 mm. for d < 500 mm. and 100 mm. for dee eams. If S is considered small, either

increase the stirrup bar number or use multiple-leg stirrups.
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10. For circular sections, the area used to compute V. is the diameter times the effective depth d, where d=0.8
times the diameter, ACI Code, Section 22.5.2.2.

Where:

Shear resistance of the concrete

Factor for considering the component height

Factor for normal or lightweight concrete

Longitudinal reinforcement ratio of the tension reinforcement
Concrete compressive strength

Design axial force

cross-sectional area

Width of the cross-section

Effective depth
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Example (1): A simply supported beam has a rectangular section with b=300mm., d=540 mm, and h=600 mm. and is
reinforced with 4 ¢ 25 mm bars. Check if the section is adequate for each of the following factored shear forces. If it is not
adequate, design the necessary shear reinforcement in the form of U-stirrups. Use f; = 28 MPa and f,, =420 MPa. Assume
normal-weight concrete. When :

(a) Vu=52 kN, (b) Vu =104 kN, (c) Vu =243 kN, (d) Vu =337 kN, (e) Vu =560 kN

Solution
Calculate V_:

V. =017 A+/f! b,d =017 x1x V28 x 300 x 540 = 145728 N ~ 146 kN

Calculate 0.5V,
146
Ve = 0.334/f/ b, d = 0.33 x /28 x 300 x 450 = 236 kN  and

VCZ = 066 fC’ bW d — 2 VCl == 4‘72 kN

(a)V, = 52 kN
V—Vu—52—6933kN =
T g T 075

S
3 -—
gl

5V, (69.3 kN) < 0.5V, (73 kN)

~ no shear reinforcement is needed.
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(b) V, = 104 kN
v, 104
Vn_a_ﬁ=139k1v
SV, (73kN) <V, (139 kN) < V. (146 kN)

~ minimum shear reinforcement is required.

d
TIPS §S600mm

540
WS, = T=270mm£600mm ~§,=270mm

T
Use ¢ 10 mm therefore A, = 2leg = 2 X (102 X 3) = 157 mm?

([ Avfye ) (157 x 420 )

S3 = smaller of < 0.062yJc b P = min < 0.062y28 X 300 ’
Ay e 157 x 420

. 035b, J . 0.35 x300

S. = min 670mm
3 628 mm

 Smax= min(S, and S3) = 270 mm

g

~ Use ¢ 10 mm @ 260 mm c/c , U-stirrups
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Ay fyed

S

( calculated )

or S, = 600 mm

SZ:Z' or S, = 300 mm

Change Section Dimension

(4 fyt )

!
Sz = smaller of 5 0'062\/f_c Bw ¢ (calculated )
Ay fyt
L 0.35 by, ) .

“—




(c)V, = 243 kN
v, = . _ 324 kN
"9 075

. V. (146 kN) <V, (324 kN)

. shear reinforcement must be provided and calculate Vi

Vs =V -1
Vs =324-146 = 178 kN
Vs (178 kN) < V¢ (236kN) < V.,(472 kN) =~ the dimensions of the sec.is OK

Calculate the stirrups spacing, Use ¢ 10 mm therefore A,, = 157 mm?
4, fyed _ 157 x 420 x 540

=2
1 v, 178 x 10° !
For Vg (178 kN) < V.1(236 kN)
d
WS, = ES 600 mm
540
~ S, - = 270mm < 600mm -~ S, = 270mm and
([ Ay fie 157 x 420
S, = smaller of  {%002V/e bwl _ i 10.062v28 x 300
Ay fyt 157 x 420
| 0.35b, 0.35 x 300
S. = min 670 mm E .
3 628 mm J

Smax = min(S; , S, and S3) = 200
~ Use ¢ 10 mm @ 200 mm c/c , U-stirrups

Prof. Dr. Haleem K. Hussain
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(d)V, = 337 kN

V—V”—337—449k1v
"¢ 075

2 V. (146 kN) < V, (449 kN)

~ shear reinforcement must be provided and calculate V

Vs =Va -1
Vs =449 -146 = 303 kN
Vs (303 kN) < V,(472 kN) = the dimensions of the sec.is OK

Calculate the stirrups spacing, Use ¢ 10 mm therefore A, = 157 mm?

o _ Avfyed _ 157 X 420 X 540

=117 mm
1 v, 303 x 103
For Vs (303 kN) > V(236 kN)
d
~S§5,= ZS 300 mm
540
S, =—=135mm<300mm ~S,= 135mm

4
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(A fie 157 X 420

and 53 = smaller Of { 0.062 fC bW = min 0062\/% x 300
Av fyt 157 X 420
| 0355, 0.35 X 300

.} 670mm e
S3 = mm{628mm} ~S3= 628 mm

Smax = min(S; , S, and S3) = 117 mm

~ Use ¢ 10 mm @ 110 mm c/c , U-stirrups

(e) V,, = 560 kN

v, = % _ 260 747 kN
"9 075

. V. (146 kN) < V,, (747 kN)

. shear reinforcement must be provided and calculate Vi
Vs =Vh -V

Vs =747 -146 = 601 kN

Vs (601 kN) > V,(472 kN) ~ Not OK and change the dimensions of the section.
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Example (2)

A 5.2 m, span simply supported beam has a clear span of 4.9 m and carries uniformly distributed dead and

live loads of 65.7 kN/m and 54.75 kN/m, respectively. The dimensions of the beam section and steel

reinforcement are shown in Fig. below. Check the section for shear and design the necessary shear

reinforcement. Given f/= 21 MPa normal-weight concrete andf,; = 420 MPa.

«—— b =914

<t s
2016
570
4032
R_o& & 4
65
T «——350 —>»

WL=54.75 kN/m
WD=65.7 kN/m

Y v ¥ JF Y

HRREE]
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Solution V,at support
Calculate W, '
W,=12WD + 1.6 WL

W, = 1.2 (65.7) + 1.6 (54.75) = 166.44 kN /m

Calculate V,, (at face of support)

Shear diagram

W, 16644 x 4.9

Vs == > = 407.8 kN

Design V;, (at distance d from the face of the support) =V, 4 = V, r — W;, d
Via = Vg — Wy d = 407.8 — 166.44 X 0.57 = 313 kN

~V,= 313 kN
v, = b _ 313 — 417 kN
T 9 075

Calculate V,

V. =0.17A+f! b,d =017 x 1 x v/21 x 350 x 570
V. = 155 kN
Calculate 0.5V,

155
0.5 Vc = 0.5Vc == T =775kN




Ver = 0.334/f! b, d = 0.33 x /21 x 350 x 570 = 302 kN

and VCZ = 0.66 fC, bW d=2 VCl = 604 kN

2 V. (155 kN) < V, (417 kN)

. shear reinforcement must be provided and calculate Vg

Vs =Va -1
Ve = 417 -155 = 262 kN
Vs (262 kN) < V(604 kN) =~ the dimensions of the sec.is OK

Calculate the stirrups spacing, Use ¢ 10 mm, therefore A, = 157 mm?

Ay fyed 157 X 420 X 570

S = 143 mm
1 v, 262 % 103
For Vs (262 kN) < V-1(302 kN)
d
WS, = ES 600 mm
570
Sy, =—=2865mm<600mm S, = 285mm

2
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[ Ay fue 157 X 420
S = smaller of  « 0.062fc bw | _ min 0.062v21 x 350
Ay fyr 157 X 420
| 035b, 0.35 x 350
_ . ) 663mm e
S3 = mm{ £33 mm} & S3= 538mm

Smax = min(S; , S, and S3) = 143 mm = 130 mm
~ Use ¢ 10 mm @ 130 mm c/c
From shear diagram, the shear force on beam not constant and decrease to zero in center of beam, therefore using the spacing
(S= 130 mm) for all beam is not economic, because this value (S= 130 mm) determined according to maximum shear force at
distance d from support. So, for such cases when shear force not constant, the beam can divide to 3 or 2 zones according to
the following.
Zone 1: Vo < 0.5V, gq.a no shear reinforcement is needed.
<

Zone2: 05Vepsa <V, =V minimum shear reinforcement is required.

Zone3: V, >V shear reinforcement is necLuired. —

-

Zone 1 and zone 2 can be consider as one zone with minimum shear reinfor: »

It is easy to locate these zones as shown below, for zonel, by determine the ion of V = 0.5¢Vc (x,) and for zone2, by

determine the location of V= (x,).
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20ne3  z0ne? zonel  zone2 . zone3
L{latsuppnrtv
Ve




<4— Face of Support

Shear carried
A P e by stirrups ¢Vg
T
4 Py
(Vy-90Ve) ‘—é ]
Y
A
oV
\J
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Shear carried
by concrete ¢V¢

Shear reinforcement required

Min. shear

\ 1 dVe/2

Shear ~

reinforcement

P reinforcement ~

> < > ~
not req’'d
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For zonel, V = 0.5¢Vc = ¢ X 77.5 = 58.13 kN, from similarity of triangles

Vs  0.5¢V;
/2 x

0.5¢V. 1  0.75x 77.5 x 4.9

= 0.35
2V, 2 X 407.8 i

x1=

For this distance of x,; from center, no shear reinforcement is needed.

For zone2, V = ¢Vc = 0.75 X 155 = 116.25 kN, from similarity of triangles

Vu,f _ ¢Vc
l/2 X1 +x2

¢V.1  0.75% 155 X 4.9
2V,r ~ 2%4078

x, = 0.7 — 0.35 = 0.35 mm

=0.7mm

X1+XZ=

For this distance of x,, minimum shear reinforcement is r

Smax = min (S, and S3) = 285 mm &275 mm
~ Use ¢ 10 mm @ 275 mm c/c %‘

—

-
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Actually, we can use min. shear reinforcement for x; + x,.

For zone 3,

l 4.9
X3 =5~ (x1+x3) = - 0.7 =1.75mm

Smax = min(S;,S, and S3) = 143 mm = 130 mm

= Use ¢ 10 mm @ 130 mm c/c

WVer=407.8 KIN

HA&{

Vaa=313 kN

5 Maximum
spacing

\ No Shear reinforcement

$¢V=116.25 kN

?’*

Stirrups (min. spacing)
N — . ¢

0.5¢pV.=58.13 kN T .

R
{concrete) ’_I

- 2.45 m -
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Distribution of stirrups.
o

CL
e
S/2
65 <«——0 10 mm @ 130 mm c/c > < ¢ 10 mm @ 275 mm c/c >
< 1.75m > < 0.7m -




SHEAR FORCE DUE TO LIVE LOADS

In example 2, it was assumed that the dead and live loads are uniformly distributed along the full span, producing
zero shear at midspan. Actually, the dead load does exist along the full span, but the live load may be applied to the
full span or part of the span, as needed to develop the maximum shear at midspan or at any specific section. Figure
5.15a shows a simply supported beam with a uniform load acting on the full span. The shear force varies linearly
along the beam, with maximum shear acting at support A.

In the case of live load, W, = 1.6W L, the maximum shear force acts at support A when W, is applied on the full
span, Fig. 5.14a. The maximum shear at midspan develops if the live load is placed on half the beam, BC (Fig.
5.14b), producing Vu at midspan equal to W,L/8. Consequently, the design shear force is produced by adding the
maximum shear force due to the live load (placed at different lengths of the span) to the dead-load shear force (Fig.
5.14c) to give the shear distribution shown in Fig. 5.14d. It is common practice to consider the maximum shear at
support A to be WulL2 = (1.2WD + 1.6WL)L2, whereas Vu at midspan 1s W,L/8 = (1.6 W L)L/8 with a straight-line

variation along AC and CB, as shown in Fig. 5.14d. The design for shear in this case will follow the same procedure

explained in Example 2. If the approach is applied to the beam in Example 2, then \
-

Vu (at A) = 407.8 kN and Vu (at midspan) = (1.6 x 54.75) (4.98) = 53.66 E; E
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W Dead-load shear
wL/2
wol/2 : +

wy = 16w, -
A ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ] B
VAN C AN wyL/2

()

K Live load on 1/2 span

3w,L/8
(w, + wy)L/2
1 2 [\\
w1U2 T + *
T wyl./8
T
e
A C B
wolL/8
— sl -
WIUZ
Max, shear due to dead F |
and live loads T~ (W, + wy)L/2

Fig. 5.14
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Example 3

A 5.2 m, span simply supported beam has a clear span of 4.9 m and carries uniformly distributed dead and
live loads of 65.7 kN/m and 54.75 kN/m, respectively. The dimensions of the beam section and steel
reinforcement are shown in Fig. below. Check the section for shear and design the necessary shear
reinforcement by taking the effect of placing of live load to produce maximum shear at mid-span. Given

fc'=21 MPa normal-weight concrete and fyt=420 MPa.

e— b =914

- 1 — 75 |
M 2016 & —T_ WL=54.75 kN/m !

WD=65.7 kN/m
FIRRRNRRRNRNRN
L 4032 i Y Y

- 2 o o a - didie. 1“‘_
‘[ C B V300
«——350—>» ,
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Solution

As shown above in figure the maximum shear force will be

(w, + wy)Li2 h
R

wili2 P~ | >
[~ o
= wol./8
ki =52 ‘
T
A C B
woL/8
=~ -~
7 w, L/2
MZX]._ shf;ar gue to dead S
and live loads e G+ Wil
(d)
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W, =12WD = 1.2(65.7) = 78.84 kN /m
W, =16 WL = 1.6 (54.75) = 87.6 kN/m

Calculate V (at face of support)

(W, +Wp) L (78.84 +87.6) X 4.9
2 T 2

W, 1
Vim (at midspan) = ?2 (87.6) (4.9 /8) = 53.66 kN

Calculate I, 4 (at distance d from the face of the support) from similarity of triangles

= 407.8 kN

Via — 5366  Vyp —53.66

L_ d L/2 407.8 kN
2

Via —53.66  407.8 — 53.66

% - 49/2

53.66 kKN
Vwa = 3254 kN |

Vua _ 324 _ a4k ! - :
® 075 R |

Vn,d =




Calculate V.

V. =0.17A+/f! b,d = 0.17 x 1 x v21 x 350 x 570
V. = 155 kN
Calculate 0.5V,

05V, ====775kN

Ver = 0.33 /£ by, d = 0.33 x V21 x 350 X 570 = 302 kN

and Vg, = 0.66+/f b, d =2Vg, = 604 kN

s~ V. (155kN) <V, (434 kN) - shear reinforcement must be provided and calculate Vs
Vs =Vna-V

V¢ =434-155= 279 kN

Vs (279 kN) < V,(604 kN) - =
= the dimensions of the sec.is OK -_ % \

Calculate the stirrups spacing, Use ¢ 10 mm, therefore A, = 157 m




_ Avfyud _157x 420X570 _
1= Ty T 279x108 ™M

~S,

N

< 600 mm

£S;=22=285mm<600mm ~S,=285mm and

Ay fye ) (157 x 420 )
0.062./f. b, ) 0.062v21 x 350
Sz = smaller of 4y for > = min 157 x 420 ’
. 035b, . 035 X350 )
_ ..} 663mm . C
S = mm{538mm} . S3= 538mm

Smax = Min(S;,S, and S3) = 134 mm -

. e
~ Use ¢ 10 mm @ 130 mm c/c &'

Prof. Dr. Haleem K. Hussain
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From shear diagram, the shear force on beam not constant and decrease to 53.66 kN in center of beam, therefore
using the spacing (S= 130 mm) for all beam is not economic, because this value (S= 130 mm) determined according
to maximum shear force at distance d from support. So, for such cases when shear force not constant, the beam can

divide to 3 or 2 zones according to the following.

Zone1: 'V, < 0.5V gqq no shear reinforcement is needed.
Zone2: 0.5Vegga < Vu <V minimum shear reinforcement is required.
Zone3: V, >V, shear reinforcement is required.

Zone 1 and zone 2 can be consider as one zone with minimum shear reinforcement.
It is easy to locate these zones as shown below, by determine the location of V= ¢Vc ( distance x1)

For zones 1 and 2, V=¢0Vc = 0.75* 155 =116.25 kN, from similarity of triangles
Viy —53.66 ¢V —53.66

l/2 Xq
407.8 —53.66  116.25 — 53.66
4.9/2 B X4

x; = 043 mm

-]
L
b =
-
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For this distance of x;, minimum shear reinforcement is required
Smax = mMin(S, and S3) = 285 mm ~ 280 mm

~ Use ¢ 10 mm @ 280 mm c/c

For zone3,
l 4.9
X9 =§—X1 =7—043 =2.02m

Smax = Min(S; ,S, and S3) = 134 mm = 130 mm

~ Use ¢ 10 mm @ 130 mm c/c
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Vu=4078 kN |
V254N =
- |
GVo-itosin] (R S |62
Zone 3 -
WSSO — T .
Zone 2 Z+ne 1
- '
X2 xi |l
s
I B - —.
|
First Stirrup at 65 mm—._ |
i - | o
S/2 ¢ 10 mm at 130 mm ¢ 10 3t 280 ¢ 10 mm at 130 mm $/2
. 2.02m | 043m H

49m
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Example 4

A 3.05 m -span cantilever beam has a rectangular section and carries uniform and concentrated factored loads (self-weight is
included), as shown in Fig. below. Using f; = 28 MPa, normal-weight concrete and f,; = 420 MPa, design the shear

reinforcement required for the entire length of the beam according to the ACI Code.

P, =89KN P,y = 35.6KkN X
Yy |: j
w, = 80.3 kN/m 50 32
\
A . — B 510
1V ¥ 3 3 v ¥ ¥ ¥ 500
C 1
2025
Y | o/ \o
«— 1.22m ___»‘_‘_,__“_ 1.83m » bz T
.: 65 | 300 — 5
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Solution
Calculate the shear force along the beam due to

external loads:

P, = 89kN Py = 356 kN
Vi, (at support) = 80.3(3.05) + 89 + 35.6 w, = 80.3 kN/m
= 369.52 kN 4 : ) o l\r B
SR T 2 T T ;
Vya(at d distance) = 369.52 — 80.3 x 0.51 C
= 328.56 kN i 122 m o1 PPN TN 1 . 7 s
V1201 (at 1.22 left) = 369.52 — 80.3 x 1.22 E=U-5}.]
= 27155 kN 369.52 kN —__
T
328.56 kN|-————>
Vu’l_ZZR(at 1.22 Tlght) = 271.55 -89 H"‘—»..H
S b ~1271.55kN
Viyena(at free end) = 35.6 kN 182.55 kN |__
The shear diagram is shown below - \
f.h"’, v . “-=h|_“h“
x1=2.75
4L —— | ~~35.6kN

L | |
)*';1'22 m___ _,%,0.99 = ”-54.,)<_|

x, =084 1702




Calculate V,

V., =017 A+/f b, d=0.17 x 1 x ¥28 x 300 X 510
V, = 137.6 kN
Calculate 0.5V,

05V, === =688 kN

Ver = 0.334/f, b, d = 0.33 x /28 x 300 x 510 = 267.2 kN
and Vg, = 0.66+/f) b, d =2V, =5344kN

V,a 32856
VTl — L —
@ 0.75
. V. (137.6 kN) <V, (438.1 kN)

. shear reinforcement must be provided and calculate Vs

= 438.1 kN

Vs =Va -1
Vs =438.1-137.6 = 300.5 kN
Vs (300.5 kN) < V-,(534.4 kN) . the dimensions of the sec.is OK

Calculate the stirrups spacing, Use ¢ 10 mm, therefore A, = 157 mm? = -
¢ Ay fyed 157 X 420 X 510 & -

L — 112
1 v, 300.5 x 10° i
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For Vs (300.5 kN) > V.1(267.2 kN)

d
“§5,= ZSBOOmm

510
.'.SZ=T=127mmS3OOmm %S, = 127mm ,and

[ Ay fe 157 X 420
S3 = smaller of < 0.062fe bw { _ min 0.062v28 X 300
Ay fye 157 X 420
. 0.35b, 0.35 x 300
_ 1670 mm e
S3 = mm{628mm} s S3= 628 mm

Smax = mMin(S; ,S, and S3) = 112 mm = 110 mm

~ Use ¢ 10 mm @ 110 mm c/c

From shear diagram, the shear force on beam not constant and decrease. to 35.6 kN at free ent

—

fam) determined accor
-

nt,ﬁ_ the beam can divide to 3 or 2 zones

efore using the

spacing (S= 110 mm) for all beam is not economic, because this value (S=
force at distance d from support. So, for such cases when shear force n

according to the following.
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Zone1: V; < 0.5V gqa no shear reinforcement is needed.
Zone2: 0.5Vegga < Vy <V minimum shear reinforcement is required.

Zone3: V, >V, shear reinforcement is required.
Zone 1 and zone 2 can be consider as one zone with minimum shear reinforcement. ( d/2, 600 mm)

It is easy to locate these zones as shown below, for zonel, by determine the location of V= 0.5¢Vc (x,) and for
zone2, by determine the location of V= ¢Vc (x,).

For zonel,

V=0.5¢Vc=0.5 *0.75* 137.6 =51.6 kN,

35.6 + 80.3 x] = 0.5¢V,
§ 516 ESi6
1 80.3

Xq =0.2m from free end
~x;= 3.05-02=275m from support

For this distance of x; from free end, no shear reinforcement is needed.

For zone2, V=¢Vc¢ = 0.75*137.6 =103.2 kN, from similarity of triangles

35.6 + 80.3 x;, = ¢V, S
., 103.2-35.6 ' _
X, = 303 =0.84m from freeend 35

s~ x, = 3.05—-0.84=221m fromsupport
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For the distance x3 = x;, —x; = 0.64 m,
minimum shear reinforcement is required
S;orS,, S, =d/2,600 mm

510
Sz = T = 255 mm

~ Use ¢ 10 mm @ 250 mm c/c
Actually, we can use min. shear reinforcement for all the distance x3.
For zone 3,

For the distance x, = 2.21m
Smax = min(S; ,S, and S3) = 112mm = 110 mm

~ Use ¢ 10 mm @ 110 mm c/c

e et 221 m I | g 0.64 m —_— 0.2m | ————
d 10 mm @ 110 mm cfc ¢ 10 mm @@ 120 mun c/c

s/2=55mm

Distribution of stirrups.




Reinforced Concrete Design

Analysis and Design of One Way Concrete Slab
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Two way slab behavior

Dimension of Slab L X S

g < 2 with Uniform distributed load

Supported on Four Edges
Considers two strip in two direction

Deflection for assumed simply

S5Wi*
384 EI

supported beam : A=

If the two strip have same thickness

then deflection will be :

Aab = kW, S*

Acd = kW _, I*

Where: W, and W ., is the transferred

load by the strip ab and cd respectively
If Wu= W, +W,_

L

Fig. (1)

. >




Behavior of a two-way slab



The A deflection at e are equal for both strip

kWab S*= kWed [

Wab = —
@ S

L*Wed — (L\*

= ( ) Wed

The transferred load into the short Direction = Load in Long Direction multiply by factor (L/S)?
L

If (E) =15 then Wed = 0.165W  and Wab = 0835W
/
S

If (

That s mean the short Direction resist the greater part of total applied load and when (L/S)>2 then the load

) =2 then Wed = 0.059 W and Wab = 0941 W

transferred to the long Direction will be very small and can be neglected.




The analysis method assume :
-Uniform distributed load
-Live Load/ Dead Load < 3 -Thickness of slab

ACI Code 1963 the h,,, not less then 90 mm
according to eq :
_ 2(In+Sn)

. >
- 180 = 90 mm

ACI Code 2014 present equation for slab with beams :

1-Table 8.3.1.1

n (08422
—— 1400 > 90 mm
iy 36 + 96 -
where:
_ ILn
Y

Ln, Sn : clear span of long and short direction
respectively

Middle strip Half Column strip

Half Column strip

Half Column strip Middle strip Half Column strip

| S/4 | +M§12 | S/4 |
S ——
L4 ||

I +Ml |
L2 |l | +Ms|
-Ms i | ‘| -Ms
Li4 ||
R — - - = 5 _, I ==
-M!/




Table 8.3.1.1—Minimum thickness of nonpre-
stressed two-way slabs without interior beams

(mm)i
Without drop panelst®] With drop panelst®]
Interior Interior
Exterior panels panels Exterior panels panels
Without With Without With
y . edge edge edge edge
MPalll beams | beams[¥l beams | beams!
280 £,/33 £,/36 £,/36 £,/36 £,/40 £,/40
420 £n/30 £n'33 £af33 £n/33 £/36 £n/36
520 £/28 £/31 £./31 £,/31 £./34 £./34

g, is the clear span in the long diwrection messured face-to-face of supports (nmum).

BlFor f;, between the values given in the table minimum thickness shall be ealculated
by linear interpolation.
BlDyop panels as given in 82 4.

FlSlabs with beams between columns along exterior edges. Exterior panels shall be
considered to be without edge beams if aris less than 0.8. The value of ar for the edge

beam shall be calculated in accordance with 8. 10.2.7. 6




Table 8.3.1.2—Minimum thickness of nonpre-
stressed two-way slabs with beams spanning

between supports on all sides

u_f,,,nl Minimmumn /7, imin
g, < 0.2 8.3.1.1 apphies (n)
f,(0-8+ 7> J —_—
0.2 < ot < 2.0 Greater ] 11400 {b)[-].[ )|
o of: 36+ 5B(cy, —0.2)
125 (c

Greater ' (1)[2113]

ot:

Mga 15 he average value of uy fon all Leains on edges of a panel and ar shiall be calcu-
lated 11 accondamce walth 8.10.2.7.

Pls,_ is the clear span in the long direcrion. measured face-to-face of heams (mm)

.

IR 1s the rano of clear spans in long 10 short direcnions of slab

@m:is the average of ar of all beams

as: the flexural stif fness of beam/flexural stif fness of sl
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ACI Code suggest 3 methods to analyze the

Two-way slab
ACI Code suggest three methods to analyze the
Two-way slab since 1963
[-method 1
Method 2
The Moment at the middle strip :
M= CWuS?
C= is a factor can be found from tables

The Moment at the column strip = 2/3 M mid

]
Case b

]

Case 2 Case
]

Case 3 Case 4

||

Slab Cases

-]
- "
5 b 2

10




For Method 2

Where the negative moment on one side of a support is less than 80 percent
of that on the

other side, two-thirds of the difference shall be distributed in proportion to
the relative

stiffness of the slabs.
M?2
— <
M1
M Difference = M2-M1

0.8

2/3 M Difference Distributed for both side

according to the slabs stiffness

While In Method 3 if M1 # M2,

The negative Moments in can be take is the maximum positive moment

s

Interio{' Support

11
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Variation of
M, along |-|

Mo, max

Variation of
My, max OCross 2-2
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Shear Force

The shear force on slab can be calculated according to the

figure shown and transferred the equivalent load to the
beams
Short Direction
Wu La
W = 3 for moment
Wu La
We = 2 for shear
long Direction
wu S (3 —m?
Weq = 3 5 for Moment
wu S
Weq = T( 2—m) for shear

m= S/L or La/Lb

S,L: length of span C/C in both direction

13
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Wu*S/2
,A‘/\\. _’ W_*l_'_
A N N |
%) \,
| /)]
LS Ll
RA RB RA RB
Weq Weq,
S ] I
Ra Rb Ra LU

14
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Example (1) : An Interior Two way slab panel 6.0 m * 7.2m carry a live load 10 KN/m2. The slab thick 200 mm and
is supported on beam 300 mm width and 900mm depth. Assume that the super imposed dead load equal to 3
KN/m2 . Determine the principal bending and shear in slab. Fy=420 MPA, fc=21MPa

5.7 r
= 161.8 mm = 90 mm |i| ’i|

Solution: N
Method (2) | | el \ |
1- Minimum thickness 6 m
-ACI code 1963 —~— :H: - - - —
N 2 X (Sn + Ln) _ 2(5700 + 6900) i ' '
. 180 180
-The ACI code 2014 | n
* when the slab does not supported by beams B |
(interior panel) using ACI Table 8.3.1.1 ) // ‘E | e | //
* For slab supported by beams : ( a,, > 2) N[ 4
ACI code ( table 8.3.1.2): , ,
42
o, kn (O w 1%0) 69 (08 + 170) - 90 mm | |
36 I 36+9x(69) = F e —

We will use h = 200mm ( as mention in Example)

15
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Self Wtof slab =t *1+x1x ¢c=02x1%1%24=48KN/m2
Wu = 12WD + 1.6WL
Wu=12(48+3)+1.6 x 10 = 25.36 KN/m?2

S 6 Sn 5.7
m—L—7.2—0.833 or m_<Ln_6.9
From Table m lies between 0.8 and 0.9 for interior panel CASE 1
Moment factors for Short Direction

= 0.83) no big dif ference (for method 2 use L and S center to center)

Factor 0.8 0.833 0.9 Moment
- C 0.048 0.04536* 0.040 Negative moment
+C 0.036 0.03402 0.030 Positive moment

oL (0.9 — 0.833) x 0.048 + (0.833 — 0.8) x 0.04
1 (0.9 — 0.8)

*

= 0.04536

—Mu = ¢ Wu. 5% = 0.05436 X 25.36 X 6% = 41.41 KN.m/m
+Mu = ¢ Wu. 5% = 0.03402 x 25.36 X 62 = 31.06 KN.m/m

16




METHOD 2—TABLE |—MOMENT COEFFICIENTS

Short span
Values of m Long
- span,
Moments 1.0 | 0.9 | 0.8 | 0.7 0.6 0.5 all
. and | values
I | less| of m
Case 1—Interior panels
Negative moment at—
Continuous edge 0.033 0.063 | 0.083| 0.033
Discontinuous edge —_— e e e
Positive moment at midspan 0.025 0.047 | 0.062| 0.025
Case 2—One edge discontinuous
Negative moment at—
Continuous edge 0.041 | 0.048 | 0.055 | 0.062 | 0.069 | 0.085| 0.041
Discontinuous edge 0.021 |0.024 | 0.027 | 0.031 | 0.035 | 0.042| 0.021
Positive moment at midspan 0-031 | 0.036 | 0.041 | 0.047 | 0.052 | 0.064| 0.031
Case 3—Two edges discontinuous
Negative moment at—
Continuous edge 0.049 | 0.057 | 0.064 | 0.071 | 0.078 | 0.090| 0.049
Discontinuous edge 0.025 | 0.028 | 0.032 | 0.036 | 0.039 | 0.045| 0.025
Positive moment at midspan 1 0.037 | 0.043 | 0.048 | 0.054 | 0.059 | 0.068| 0.037
Case 4—Three edges discontinu- |
ous |
Negative moment at— |
Continuous edge 0-058 |0.066 | 0.074 | 0.082 | 0.090 | 0.098| 0.058
Discontinuous edge 0.029 | 0.033 | 0.037 | 0.041 | 0.045 | 0.049| 0.029
Positive moment at midspan 0.044 |0.050 | 0.056 | 0.062 | 0.068 | 0.074| 0.044
Case 5—Four edges discontinuous
Negative moment at— |
ontinuous edge | — — —_ | = — — —
Discontinuous edge | 0.033 |0.038 | 0.043 |'D.IJ4'? | 0.053 | 0.055| 0.033
Positive moment at midspan | 0-060 |0.057 | 0.064 [0.072 | 0.080 | 0.083| 0.050
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Moment factors for Long Direction

-C= 0.033 negative moment factor |||

+C=0.025 Positive moment factor S St — ﬂf-f

-Mu = ¢ Wu.5% = 0.033 x 25.36 X 62 =30.13 KN.m/m
+Mu = ¢ Wu.5% = 0.025 X 25.36 X 62 = 22.82 KN.m/m

/ ! 31.06 | /
Moment at column strip will be 2/3 from middle m BE %

strip moment in both direction

7.2 m
N
=

Shear in Slab |

vy L WuZXS . ' ) 30_.134 ’ 5 #_:
2536 X6 B | .
= == —— = 76,08 KN/m I NG Il

18
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- ===

E cs 2071
S L/4
' ' 1
I B l—
Moment diagram Z | 31.08 7
( KN.m/m) = _ /
In Short Direction - E || | | |
Middle and Column Strip o 2 L2 B = o H—
M~ S M.S
E .
' '41.41 41.41"
® I
£
2| L4 C.S 20.71
o I |
ES g = - o - -
i | .
||| Y H|
Ry
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L oads on Beams

Bending Moments
1-long Direction

o _wuS(3—m?\ 2536x6(3-0833%\ . y
e =3 2 = 3 2 = 58. /m from one side
_wus
W, = B (2—m) for shear
Wu*S/2 _
There is two slab transferred load to the beam
W,, = 2 X 5847 = 116.94 KN/m ( from both side) m ‘ ‘ ‘ ‘ m %
Self weight of drop beampart = 1.2X (h—t)Xb X1 Xyc %
= 1.2%x(09-0.2)x1x0.3 %24 =6.05KN/m T L T
[ |
Total Wu, = 116.94 + 6.05 = 122.99 KN /m RA RB
W,
I——-‘. L L
Ra Rb

20
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2- Short Beam

WusS
Weq = 3 Wu*S/2
P
25.36 X 6 , N
= —— = 50.6 KN/m from one Side Py
3 V)
There is two slab transferred load to the beam £ 1
7l
Weq = 2 x 50.6 = 101.2 KN/m T‘ S 4
Self weight of drop beam part = 6.05 KN/m
RA RB
Wua = 101.2 4+ 6.05 = 107.25 KN/m
Weq.= Wu*S/3
Piiiidid LLbisl

Rb

21
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Beam Moment Calculation

Using Factored for interior panel for beams
1- Long Direction

Wub = 122.99 KN/m

1 1
—M == Wub x 1?) = = x (122.99 X 6.92) = 532.32 KN.m

1 1
+M = — (Wub x 1?) = = x (122,99 X 6.92) = 365.97 KN.m

2- Short Direction
Wub = 107.25 KN/m

1
—M == Wua x $2) = 1/11 x (107.25 X 5.72) = 316.78 KN.m

1
+M =— (Wuax§?) = 1/16 x (107.25 x 5.72) = 217.8KN.m

~1116 -1/10 , -1/11 A1 111 /11

Column_— b +1I1_:_4___, " N "'1”9...--” " +1,r1§___.__.f I
| b Sn Aol _Sn_ 4ol _Sn_ i

B.M Factors

22
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Shear in Beams

1-Long direction

W, = Wu xS/4 X(2—m)

= 2536 X6 /4 X (2—0.833) = 4438KN/m
From both side have load

2 X 44.38 = 88.76 KN/m

Self weight of Beam = 6.05 KN/m
W.,=88.76+6.05= 94.81 KN/m

Shear force at support
WuxL 94.81x7.2
Vu = A0 > = 341.22 KN
1-Short direction
WuS
Wi _ 2 for shear
25.36 X 6
Sz B 38.04 KN/m

From both side have load and adding self weight of beam
Wua= 2x 38.04+ 6.05= 8213 KN/m

Shear force at support "
WuxS 8281x6 | ;
Vu = > = > = 246.4 KN -

23
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Method 3

ACI code using method 3 and denoted to long direction as b and short direction with a and
considering the live load effect.

- Negative Moment
1- Short direction ( a)

-M=C,,. WulL/

a neg

2- Long direction (' b)

-My= Cy .0 Wu s

Where:

Wu : total uniform factored load ( D.L + L.L)
C,: Moment coefficient from table

C,: Moment coefficient from table

L ,: clear span for short direction

L,: clear span for short direction

24
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Positive Moment
1 — Short direction ( a)

+Ma p.. = CabL xWu DL x La?
+MarLL= CarL.L xWuLL x La?
+Ma = +Map.L+ Mal.lL

2 — Long direction ( b)
+Mbp.L. = CbhbDL x WubL x Lb?
+MbL.L. = CbLL x WuLL x Lp?

+Mb = +Mbop.L+ MbL.L
Note:
When two negative moment at support are dif ferent for continuous slab,

S
3 -—
gl

can take average Moment:

_ Mleft+ Mright
3 2

25
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Moment Direction

Short Direction S or (a) Long Direction L or (b)

Negative Moment (-M) -M,= C, eg WU La? -Mp= Cy, neg WU Lb?

+Ma p.. = CabpL. xWunbpLx La2 | +Mbbp.L. = CbbL x WubL x Lb?

+MaLrL=CaiL. xWurLL xLa2 | +MbLr.L. = CbLL x WuLL x Lb?
Positive Moment (+M)

+Ma = +MaD.L+ Mal.L +Mb = +MbD.L+ MbL.L

- =

26
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Example (2) : (as in Ex. 1) An Interior Two way slab panel 6.0 m * 7.2m carry a live load 10 KN/mz2. The slab thick
200 mm and is supported on beam 300 mm width and 900mm depth. Assume that the super imposed dead load
equal to 3 KN/m2 . Determine the principal bending and shear in slab. Fy=280 MPa, fc=21MPa

Sol.
Wu= 25.36 KN/m’ (exa. 1)
Interior panel continues from all side ( Case 2) Table 1

la _ (6-03) _ .. ,
b (72-03) = (ora/b)

1- Negative Moment Factors

- Short Direction ( by interpolation)

0.8 0.065

- ) . 0.06 x (0.826 — 0.8) + 0.065 x (085 —0826) _
(0.85 — 0.8)

0.85 0.06

-Long Direction ( by interpolation)

0.8 0.027

. - _0.031 x (0.826 — 0.8) + 0.027 x (0.85 — 0.8; 6 T e
' neg.-= (0.85 — 0.8) ;
0.85 0.031 '
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METHOD 3—TABLE |I—COEFFICIENTS FOR NEGATIVE MOMENTS IN SLABS*
M4n0‘=04ne; ¥ w X A’

At & B’} where w = total uniform dead plus live load
B neg — Bneg X W X

Bt Case 1 | Case 2 II'Case 3 | Case 4 lCase 5|Case6 | Case7 |Case8 l Case 9
o=t | TP O 01T | 8| | B
Ciines 0045 | 0050 | 0.075 | 0.071 i | 0.033 | 0.061

100 Chune] 0.045 0.076§ 0.050 0.071 | 0.061 | 0.033
- Cavw 0.050 | 0.055 [ 0.079 | 0.075 ’ 0.038 0.065
Cainee. ] 0.041 | 0.072 | 0.045 0.067 | 0.056 | 0.029

000 CAms | | 0.055 0.060 | 0.080 | 0.079 0.043 | 0.068
Civia | 0.037 | 0.070 | 0.040 | | 0.062 | 0.052  0.025
085 Ctm 0.066 | 0.082 | 0.083 | 0.049 | 0.072
. Cave ' 0.065 | 0.034 | | 0.057 | 0.046 | 0.021
- Canes | 0.071 | 0.083 | 0.086 0.055 | 0.07
Chnee | 0.061 | 0.029 0.051 | 0.041 | 0.017
ons e 0.069 0.076 | 0.085 | 0.088 0.061 | 0.078
Chinsg: | | 0.022 | 0.056 | 0.024 0.044 | 0.036  0.014
Cave 0.074 | 0.081 | 0.086 0.091 0.068 | 0.081
s 0.017 | 0.050 | 0.019 | | | 0.038 & 0.029 | 0.011
i L 0.077 | 0.085 | 0.087 | 0.093 | 0.074 | 0.083

" Gl 0.014 | 0.043 | 0.015 0.031 | 0.024 | 0.008
- ' 0.081! ' 0.089 | 0.088 | 0.095 | 0.080 | 0.085
Cveic | 0.010 | 0.035 | 0.011 0.024 | 0.018 | 0.006
055 A7 | | 0.034@ 0.092 | 0.089 | 0.096 0.085 | 0.086
C nes | 0.0(_17*\ 0.028 | 0.008 | 0.019 | 0.014 | 0.005
050 | | 0.086 ’ 0.094 | 0.090 | 0.097 0.089 | 0.088
Cooen | | 0.006 | 0.022 | 0.006 | 0.014 | 0.010 | 0.003

*A cross-hatched edge indicates that the slab continues across or is fixed at the support;
an unmarked edge indicates a support at which torsional resistance is negligible.
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METHOD 3—TABLE 2—COEFFICIENTS FOR DEAD LOAD
POSITIVE MOMENTS IN SLABS*

Muigoron = Capr X w X A2

. . B’} where w — total uniform dead load
Bpoa DL = Capr X W X

Case 1| Case 2| Case 3| Case4| Case5 | Case6| Case 7 |Case8 | Case 9

Ratio
ngd_'_]r_jtjfl[_lr"]f_iﬁr"“}
Cane 0.036 0.018 0.018 0.027 0.027 0.033 0.027 0.020 0.023
0 Cs oL 0.036 0.018 0.027 0.027 0.018 0.027 0.033 0.023 0.020
Cupr 0.040 0.020 0.021 0.030 0.028 0.036 0.031 0.022 0.024
0.95 Cs oL 0.033 0.016 0.025 0.024 0.015 0.024 0.031 0.021 0.017
050 CapL 0.045 0.022 0.025 0.033 0.029 0.039 0.035 0.025 0.026

Cepr | 0.029 | 0014 | 0.024 | 0.022 | 0.013 | 0.021 | 0.028 | 0.019 | 0.015
i Cuon | 0050 [§ 0.024)] 0.029 | 0.036 | 0.031 | 0.042 | 0.040 | 0.029 | 0.028
— %

— Cro. | 0.026 21l 0.022 | 0.019 | 0.011 | 0.017 | 0.025 | 0.017 | 0.013
> g Crv | 0056 Joo26) 0034 | 0039 | 0032 | 0.045 [ 0.045 | 0.032 | 0.029

Csou | 0.023 f§ 0.011) 0.020 | 0.016 | 0.009 | 0.015 | 0.022 | 0.015 | 0.010

o8 Cio. | 0.061 | 0028 | 0.040 | 0.043 | 0.033 | 0.048 | 0.051 | 0.036 | 0.031
Csp. | 0.019 | 0.009 | 0.018 | 0.013 | 0.007 | 0.012 | 0.020 | 0.013 | 0.007
Can. | 0.068 | 0.030 | 0.046 | 0.046 | 0.035 | 0.051 | 0.058 | 0.040 | 0.033
070 Csp. | 0.016 | 0.007 | 0.016 | 0.011 | 0.005 | 0.009 | 0.017 | 0.011 | 0.006
0.65 Cao. | 0.074 | 0.032 | 0.054 | 0.050 | 0.036 | 0.054 | 0.065 | 0.044 | 0.034
Ceor | 0.013 | 0.006 | 0.014 | 0.009 | 0.004 | 0.007 | 0.014 | 0.009 | 0.005
i Capon | 0.081 | 0.034 | 0.062 | 0.053 | 0.037 | 0.056 | 0.073 | 0.048 | 0.036
Csou | 0.010  0.004 | 0.011 | 0.007 | 0.003 | 0.006 | 0.012 | 0.007 | 0.004
b Cipu | 0.088 | 0.035 | 0.071 | 0.056 | 0.038 | 0.058 | 0.081 | 0.052 | 0.037
Cpou | 0.008 | 0.003 | 0.009 | 0.005 | 0.002 | 0.004 | 0.009 | 0.005 | 0.003
Eh Cipu | 0.095 | 0.037 | 0.080 | 0.059 | 0.039 | 0.061 | 0.089 | 0.056 | 0.038
Crou | 0.006 | 0.002 | 0.007 | 0.004 | 0.001 | 0.003 | 0.007 | 0.004 | 0.002

*A cross-hatched edge mdicét_és t_hét the slab continue; ac'ross 6r is fixed at the suppm:t_:
an unmarked edge indicates a support at which torsional resistance is negligible.
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METHOD 3—TABLE 3—COEFFICIENTS FOR LIVE LOAD
POSITIVE MOMENTS IN SLABS*

Migosrr = Carn X w X A?

Mspos = Crrn X w X B?
Casel|Case2| Case3|Case4 |Case 5 |Case6 |Case 7 |Case 8 |Case 9

m= A Vo 1t o [ e ) e e W e O N i s O (|,

Caix | 0.036 | 0.027 | 0.027 | 0.032 | 0.032 | 0.035 | 0.032 | 0.028 | 0.030

} where w = total uniform live load

i Csw | 0.036 | 0.027 | 0.032 | 0.032 | 0.027 | 0.032 | 0.035 | 0.030 | 0.028
095 Ct= | 0040 | 0030 | 0.031 | 0035 [ 0.034 | 0.038 | 0.036 | 0.031 | 0.032
# Coue | 0033 | 0025 | 0.029 | 0.029 | 0.024 | 0.029 | 0.032 | 0.027 | 0.025
-~ Ciwv | 0.045 | 0.034 | 0.035 | 0.039 | 0.037 | 0.042 | 0.040 | 0.035 | 0.036

Csze | 0029 | 0022 | 0027 | 0.026 | 0.021 | 0.025 | 0.020 | 0.024 | 0.022

Care. | 0.050 § 0.037] 0.040 | 0.043 | 0.041 | 0.046 | 0.045 | 0.040 | 0.039
—> 08 .| 0028 Jooioll v.02¢ | 0023 | 0.019 | 0022 | 0026 | 0.022 | 0020
. Cuaxe | 0.056 || 0.041] 0.045 | 0.048 | 0.044 | 0.051 | 0.051 | 0.044 | 0.042
0% e | 0023 Boorzll o022 | 0.020 | 0016 | 0019 | 0028 | 0010 | 0017
Cain | 0.061 | 0045 | 0.051 | 0.052 | 0.047 | 0.055 | 0.056 | 0.049 | 0.046

Caw | 0.019 | 0.014 | 0.019 | 0.016 | 0.013 | 0.016 | 0.020 | 0.016 | 0.013

Ca.xz | 0.068 | 0049 | 0.057 | 0.057 | 0.051 | 0.060 | 0.063 | 0.054 | 0.050

Csue | 0016 | 0012 | 0016 | 0.014 | 0.011 | 0.013 | 0.017 | 0.014 | 0.011

Cauwe | 0074 | 0.053 | 0.064 | 0.062 | 0.055 | 0.064 | 0.070 | 0.059 | 0.054

Cure | 0.013 | 0010 | 0.014 | 0.011 | 0.009 | 0.010 | 0.014 | 0.011 | 0.009

Cere | 0.081 | 0.058 | 0.071 | 0.067 | 0.059 | 0.068 | 0.077 | 0.065 | 0.059

Csw | 0.010 | 0.007 | 0.011 | 0.009 | 0.007 | 0.008 | 0.011 | 0.009 | 0.007

Cars | 0083 | 0.062 | 0.080 | 0.072 | 0.063 | 0.073 | 0.085 | 0.070 | 0.063
Crzs | 0.008 | 0.006 | 0.009 | 0.007 | 0.005 | 0.006 | 0.009 | 0.007 | 0.006
Cuwe | 0.095 | 0.066 | 0.088 | 0.077 | 0.067 | 0.078 | 0.092 | 0.076 | 0.067
Csce | 0.006 | 0.004 | 0.007 | 0.005 | 0.004 | 0.005 | 0.007 | 0.005 | 0.004

*A cross-hatched edge indicates that the slab continues _across or is fixed at the support;
an unmarked edge indicates a support at which torsional resistance is negligible. 30
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Ma = Ca.neg .Wu.la? = 0.0624 X 25.36 X (5.7)> = 51.41 KN.m/m
—Mb = Cb.neg .Wu.lb?> = 0.02908 X 25.36 X (6.9)> = 35.03 KN.m/m

2- Positive Moment
Short Direction
-Factors of Dead Load ( from Table 2)

0.8 0.026

N o pp = 2024 % (0.826 - 08) +0.026 x (085 - 0.826) _
j ' (0.85 — 0.8) '

0.85 0.024

Self Wtof slab=t X1 X1Xyc =02X%Xx1X1x24= 48KN/m2
Wup,= 12(48+3) = 936 KN/m2
+Ma ,;, = 0.02496 X 9.36 X 5.72 = 7.6 KN.m/m

-Factors of Live Load ( from Table 2)

0.8 0.041

o co g — 2037 % (0.826 —08) +0.041x (085-0826) _ ' ..
' ' (0.85 — 0.8) '

0.85 0.037

WulLL = 16xXx10 = 16 KN/m2
+Ma LL = 0.03892 X 16 X 5.72 = 20.23 KN.m/m
+Ma = Ma DL+ MalLL = 7.6+ 20.23 = 2783 KN.m/m
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Long Direction

-Factors of Dead Load ( from Table 3)
0.8 0.011

0.012 x (0.826 — 0.8) + 0.011 x (0.85 — 0.826)

0.826 Cb.DL =
(0.85 —0.8)

0.85 0.012
Wubp= 9.36 KN/m2
+MbpL = 0.01148 X 9.36 X 6.92 = 5.12 KN.m/m

—Factors of Live Load ( from Table 3)
0.8 0.017

0.024 x (0.826 — 0.8) + 0.026 x (0.85 — 0.826)

0.826 Cb.LL =
(0.85—0.8)

0.85 0.019

WuiL= 16 KN/m2

+MbLL = 0.01804 x 16 X 6.92 = 13.81 KN.m/m

+Mb = MbpL + MbLL = 5.12 4+ 13.78 = 18.93 KN.m/m

=0.01148

= 0.01804

By Prof. " Dr-Haleem K. Hussain
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Shear On Slab

-Short Direction ( from Table 4)

0.8 0.71

e o 0.66 x (0.826 — 0.8) + 0.71 x (0.85 — 0.826) .
va (0.85 —0.8)

0.85 0.66

Wa = 0.684 x 25.36 = 17.35 KN /m2
5.7
Vu= WaXxLa/2 = 17.35 X - = 4943 KN/m

Long Direction ( from Table 4)

0.8 0.29

0.826 = 0.34 x (0.826 — 0.8) + 0.29 x (0.85 — 0.826) _ 0316
d (0.85 —0.8)

0.85 0.34

Wb == 0.316 X 25.36 = 8.01 KN/m2

Lb
Vu= Wb X - = 8.01 x6.9/2 = 27.65KN/m
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METHOD 3—TABLE 4—RATIO OF LOAD w IN A and B DIRECTIONS FOR
SHEAR IN SLAB AND LOAD ON SUPPORTS*

Case 1| Case 2 1 Case 3| Case 4 |Case 5 |Case 6| Case 7 |Case 8 | Case 9

Ratio
m=4 | OO ) OO e
" W. | 050 | 050 | 017 | 050 | 083 | 071 [ 029 | 033 | 0.67
MO0 . | os0 | os0 | 083 | 050 | 017 | 020 | o | 067 | 033
W. | 055 | 055 | 020 | 055 | 086 | 0.75 | 033 | 038 | 0.71
09 w. | 045 | 045 | 080 | 045 014 | 025 | 067 | 062 | 029
W. | 060 | 060 | 023 | 060 | 0.88 | 079 | 038 | 043 | 0.75
fad Wa 040 | 040 | 077 | 040 | 012 | 021 | 062 | 057 | 025

w. | 066 [fo6c ) 028 | 066 | 090 | 083 | 043 | 049 | 0.79
0.34 0.17 0.21

> Ws | 034 0.72 | 0.34 0.10 0.57_‘ 0.51

Wa 0.71 0.71 0.33 0.71 0.92 0.86 0.49 0.55 0.83
Wa 0.29 0.29 0.67 0.29 0.08 0.14 0.51 0.45 0.17

" W. | 07 | 076 | 039 | 076 | 094 | 088 | 056 | 0.61 | 0.86
e W 024 | 024 | 061 | 024 | 006 | 012 | 044 | 039 | 0.14
W. | 081 | 081 | 045 | 081 | 095 | 091 | 0.62 | 0.68 | 0.89
07 w. | 019 | 019 | 055 | 019 | 005 | 009 | 038 | 032 | om
W. | 085 | 085 | 053 | 085 | 096 | 093 | 069 | 0.74 | 0.92
%9 w. 1 o015 | 015 | 047 | 015 | 004 | 007 | 031 | 026 | 008
W. | 08 | 08 | 061 | 08 | 097 | 095 | 076 | 0.80 | 0.94
049 W, | 011 | 011 | 039 | 011 | 003 | 005 | 024 | 020 | 0.06
o 092 | 092 | 069 | 092 | 098 | 096 | 081 | 085 | 095
W» | 008 | 008 | 031 | 008 | 002 | 004 | 019 | 015 | 005
oso W | 094 | 094 [ 076 | 094 | 099 | 0.07 | 085 | 089 | 097
W, | 006 | 006 | 024 | 006 | 001 | 003 | 014 | 011 | 0.03

*A cross-hatched edfe indicates that the slab continues across or is fixed at the support;
an unmarked edge indicates a support at which torsional resistance is negligible. 34
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Shear On Beams

-Short Direction

the load transfer from slab with long direction ( on short beam)
= 27.65KN/m

and there is two slab from both side

= 2X27.65=553KN

Selfwt.of beam = 6.05 KN/m

Total Wua = 55.3 + 6.05 = 61.35KN/m

| Wua X La B 61.35 X 5.7

Vi = 174.85KN
e 2 2

-Long Direction

the load transfer from slab with short direction ( on long beam)
= 4943 KN/m

and there is two slab from both side

= 2X4943 =98.86 KN

Selfwt.of beam = 6.05 KN/m

Total Wub = 98.86 + 6.05 = 104.91KN/m
_ Wub xLb 10491Xx6.9

= 361.93KN
2 2

Vu

By Prof. " Dr-Haleem K. Hussain
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Example (3) : An Apartment building is designed using 6.1*%6.1 m Two way slabs system. The live load 2 KN/m2 , the
superimposed load ( partition loads) i1s 1.5 KN/m2 and the floor finish load is 2 KN/m2. Design a typical panels. Assume
f'c=21MPa, fy =280 Mpa. The column dimension 300* 300 mm and the supporting beams are 300 mm width . Also Design

the interior beam.

Sol.

|
-Slab Thickness |

ACI Code 1963 allowed slab thickness '_'*‘ _______ _* — = -

not less than 90 mm

L _2WtS)
TED o TR | | | |

_2A58+58) .
= 180 = Jmm SN  E—————— e e ——

ACI Code 2014 allowed using equation

7.17m

whered m > 2

Ln
B=—=10

i 280 — L ------- —L— ______________

5.8 % [0.8 + (7350)] | | | | .

36 +9x1 | 7.1m b 7.1m | 7.1m |
= 141.5mm Usetor h = 150 mm

Tim
wn
w
0))
N

tmin =
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Load On Slab Half Columnstip  Middie stip  Half Column strip

D.Lof slab = 0.15x 1 %X 1X 24 =3.6 KN/m? | sia | s/2 | sia |
Floor Finishing = 2 KN/m?
Partitions = 1.5 KN/m?

Total DL = 7.1 KN /m?

L.L = 2KN/m?

Wu = 1.2DL+ 1.6 LL

= 12%x71 4+ 1.6 x2= 11.72 KN/m?

Using Method 2

M = ceof XWux$§
From table 1 of Method 2 '
dav.= h — cover —¢ = 150 —20—-10 (use 10 mm)
= 120 mm

||-m1

L/4

Half Column strip

Middle strip

Notes

Half Column strip

1- For square panel use d average

-M/

2- rectangular panel the steel in short direction | S

at bottom layer ( large M, d the greater) and for |

long direction the steel at top layer ( d shorter) A i

20 mm

0

0

|
B
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Long span <
b (0]
d =h—-20 —¢, — 1L
2
(a) Effective depth in long direction
3
short span = Ps o | ‘_/J’
ng ll 20 mm
dS =h—20 — 7 | I

(b) Effective depth in short direction
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Choose (§3) = CASE 3

S
From Table (1)m = s 1

Moment factors for both Direction ( square panel )

—C = 0.049 Negative moment Factor Discontinuous edge
—C = 0.025 Negative moment Factor Continuous edge
+C = 0.037 Positive moment Factor Midspan

—Mu = ¢ Wu.5%=0.049 x 11.72 X 6.12 = 21.37 KN.m/m Cont.
—Mu = ¢ Wu.5%=0.025%x 11.72 X 6.12 = 109 KN.m/m Discont.
+Mu = ¢ Wu.5%=0.037 x 11.72 X 6.12 = 16.14 KN.m/m Mid span

Mid Span
. Mu
~ pbd?
16.14 x 10°

R="109x1000 x 1202) = 1.245

1 . . 2mR
P=m fy
fy
=——~ = 15,
m 0.85 * fc 5.68
e ! " ) (2 X 15.68 x 1.245) | 0.00461
~ \15.68 280 o
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METHOD 2—TABLE |—MOMENT COEFFICIENTS

Short span
Values of m Long
. span,
Moments 10 {09 | 08 (07 [ 06 | 05 all
and | values
Method 2 less| of m
Case 1—Interior panels
el Negative moment at—
Continuous edge 0.033 | 0.040 | 0.048 | 0.055 | 0.063 | 0.083| 0.033

Discontinuous edge — | = | = ]| -] - e
Positive moment at midspan | 0.025 | 0.030 | 0.036 | 0.041 | 0.047 | 0.062] 0.025

Case 2—One edge discontinuous
Negative moment at—
Continuous edge 0.041 |0.048 | 0.055 [0.062 | 0.069 | 0.085| 0.041
Discontinuous edge 0.021 |0.024 | 0.027 | 0.031 | 0.035 | 0.042] 0.021
Positive moment at midspan | 0-031 | 0.036 | 0.041 | 0.047 | 0.052 | 0.064| 0.031

Case 3—Two edges discontinuous
Negative moment at—

— Continuous edge

Discontinuous edge
Positive moment at midspan

Case 4—Three edges discontinu-

0.057 | 0.064 |0.071 | 0.078 | 0.090| 0.049
0.028 | 0.032 | 0.036 ' 0.039 | 0.045| 0.025
0.043 | 0.048 | 0.054 | 0.059 | 0.068| 0.037

ous
Negative moment at—

Continuous edge 0-058 |0.066 | 0.074 | 0.082 | 0.090 | 0.098| 0.058
Discontinuous edge 0.029 |0.033 | 0.037 | 0.041 | 0.045 | 0.049| 0.029
Positive moment at midspan | 0.044 [0.050 | 0.056 |0.062 | 0.068 | 0.074| 0.044

Case 5—Four edges discontinuous

Negative moment at—
ontinuous edge — | =] = =] = | =
Discontinuous edge 10033 1 0.038 | 0.043 ' 0.047  0.053 | 0.055| 0.033

Positive moment at midspan 0-050 |0.057 | 0.064 |0.072 | 0.080 | 0.083| 0.050
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As =p.b.d = 0.00461 x 1000 x 120 = 553 mm?/m

Use ¢ 10 mm
G 78 x 1000 A%
B

Use p 10 mmat 140 mmc/c

As min = p.b.h (mm?)

pmin = 0.0018

As min.= 0.0018 x 1000 X 150 = 270mm 2/ m < As Provide (OK)
Smax = 2X h =300o0r 450 mm at critical section  ACI (8.7.2.2)
Use ¢ 10 mm @ 140 mm

2 2
Column Strip Moment = 3 M mid = 16.14 X 3= 10.76 KN.m/m

Or can use the spacing of

1.5 * middle strip spacing = 213mm C/C < 2h =300 mm
Use Use p 10 mm @ 210 mm

Negative Moment

—Discontinues edge

- M=10.9 KN.m/m
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B u

~ ¢bd?
. 10.9 x 10° _

09 >}1000 X 1202

_ y
m = 085 x fo 15.68

F 1 ] " (2x15.68x0.841) R
T 280 e
As =p.b.d = 0.00308 x 1000 X 120 = 370 mm2/m
Use ¢ 10 mm

78 x 1000

D L 211mm, Usep 10mmat 210 mmc/c
—Continuous Edge
B = Mu

~ ¢bd>2

21.37 x 10°

(0.9 x 1000 x 1202)

(N o4 |, _2x1568x1649
P =\15.68 280

= 0.006189

As =p.b.d = 0.006189 x 1000 X 120 = 742mm?/m ._ T =
Use ¢ 10 mm

S = 78x1000/742 = 105mm Use ¢ 10 mm at 100 mm c/c K
Note: The reinforcement detail for long Direction same as of short direction
cause the panel is square (L = §)
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Check for Shear

The shear force on slab can be calculated according to (same in both direction ):

Wu.S
= > at center of support
11.72 X 6.1
= > B = 35.75KN/m

0.3
Vud = Vu — WuxT—Wuxd

0.3
= 35.75- 11.72 X > - 11.72 x 0.12 = 32.59 KN/m

QVe = ¢pX017/fc Xbxd = 0.75x%x0.17 x V21 x 1000 x 120 = 70.11 KN/m

¢ Ve > Vud ( OK section is safe)




By Prof. " Dr-Haleem K. Hussain

Interior Panal (S1)
Short Span Long Span
No. Detail tep 9 =P
(-M) (+M) (-M) (-M) (+M) (-M)
Cont. Mid Discont. Discont. Mid Discont.
1 S ¢ T 14.40 10.90 14.40 14.40 10.90 14.40
(N.mm/m)
2 d (mm) 120 120 120 120 120 120
3 m= 15.69 15.69 15.69 15.69 15.69 15.69
4 Rn= 1.111 .841 1.111 1.111 0.841 1.111
p=r.b.h
5 0.0041 0.0031 0.0041 0.0041 0.0031 0.0041
(mm?2)
6 As (calculated) 492.0 369.4 492.0 492.0 369.4 492.0
7 As(min)= 0.0018 b.h 270 270 270 270 270 270
8 As(choosed)= 492 369 492 492 369 492
9 S=1000*Ab/As 160 213 160 160 213 160
( mm)
— Xh —
10 SGEg)= 2H =3l 300 300 300 300 300 300
or 450 mm
11 S(choosed)= 160 212.6 159.6 160 213 160
12 Use S= 150 210 150 150 210 150
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Interior Panal (S2)
No. Detail Short Span Long Span
(-M) (+M) (-M) (-M) (+M) (-M)
Cont. Mid Discont. Discont. Mid Discont.
1 Mu> 106 9.16 13.52 17.88 17.88 13.52 17.88
(N.mm/m)
2 d (mm) 120 120 120 120 120 120
3 m= 15.69 15.69 15.69 15.69 15.69 15.69
4 Rn= 0.707 1.043 1.380 1.380 1.043 1.380
As =p.b.h
5 0.0026 0.0038 0.0051 0.0051 0.0038 0.0051
(mm?2)
6 As (calculated) 309 461 616 616 461 616
7 As(min)= 0.0018 b.h 270 270 270 270 270 270
8 As(choosed)= 309 461 616 616 461 616
9 S=1000*Ab/As 254 170 127 127 170 127
(mm)
— % —
10 S(max)= 2*h=300 300 300 300 300 300 300
or 450 mm
11 S(choosed)= 254.0 170.4 127.5 127 170.4 127.5
12 Use S= 250 160 120 120 160 120
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Interior Panal (S3)
No. Detail Short Span Long Span
(-M) (+M) (-M) (-M) (+M) (-M)
Cont. Mid Discont. Discont. Mid Discont.
1 Mu> 106 10.90 16.14 21.37 10.90 16.14 21.37
(N.mm/m)
2 d (mm) 120 120 120 120 120 120
3 m= 15.69 15.69 15.69 15.69 15.69 15.69
4 Rn= 0.841 1.245 1.649 0.841 1.245 1.649
As =p.b.h
5 0.0031 0.0046 0.0062 0.0031 0.0046 0.0062
(mm?2)
6 As (calculated) 369 554 743 369 554 743
7 As(min)= 0.0018 b.h 270 270 270 270 270 270
8 As(choosed)= 369 554 743 369 554 743
9 S=1000*Ab/As 213 142 106 213 142 106
(mm)
10 S(max)= 2*h=300 300 300 300 300 300 300
or 450 mm
11 S(choosed)= 212.6 141.8 105.7 213 141.8 105.7
12 Use S= 210 140 100 210 140 100
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Corner slab reinforcement detail
LLO"Q LLong

h (Liong)/5

I
,
| ‘ |

B-1
As top per 8.7.3

As per 8.7.3
top and bottom

OPTION 1 OPTION 2
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W

@ 10@140mm c/c Top and Bottom

n
[,
| Y
|

. (long /5)=1250

]
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L {long /5)=1250
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............. To be Continued_% =




