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Chapter one:
CPU Organization

. The part of Comfdﬂhul perform bulk of data proce:Sing
Operation is called the central processing unit / and is re:” red 10
as CPU. The CPU contains the hardware component for
processing “instruction and data, and we have viewed it
essentially as "black box" and have considered its interaction
with VO and memory. |

' .



1-1 Model CPU Architecture

The major structural components of CPU are:
* Arithmetic logic unit (ALU)
* Control unit (CU)

* Registers

As show in Fig. 1
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Fig. 1 Internal structure of CPU



“ALU: The Arithmetic Logic Unit is the part of CPU which
performs arithmetic and logic operation on data. All
the other elements are mainly to bring data to ALU
to process and take the result baok out

*\'U:  The purpose of the control unit is to bring the
nstructions in from the main memory and then
control their execution.

“Registers: Small internal memory, CPU used registers
because it needs to store instruction and data
temporarily while an instruction is being execute.
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There are some kinds of register as follows:

1-Accumulator: it is used as temporarily buffer to store input
to ALU. ;

2-Data register: may be used only to holed data.

3-Condution code: they are a bits set by the CPU hardware
as result of operation.

4-Program counter: contains of the address of an instruction
to be fetch.

5-Instruction Register: contains the instruction must
recently fetch.

6-Memory Address Register: contain the address of a
location in memory.

7-Memory Buffer Register: contains a word of data to be

written to memory or the word mast recently read.



1-2 Insteguvction scet design issues:

The operation of the CPU is determined by the instructions it
exccuted. These are referred to as machine instructions or
computer instructions. The CPU may perform a variety
functions. and these are reflected in the variety defined for
the CPU. The collection of different instructions that the
CPU can execute is referred to as the CPU instruction set.

Each instruction must contain the information required by the
CPU for execution (where the steps that involved in
instructions are: fetch data, process data, store data). These

elements are:

1- Operation code field: specifies the operation to be
performed, and also known as opcode

2- Address field: designates a memory address or a

processor register. [ Opcode | Operand |




Computers may have instructions of several different lengths
containing varying number of addresses. The number of
address in the instruction format of a computer depends upon
the internal organization of its registers. Most computers fall
in one of three types of CPU org. :-

1- Single accumulator organization.

2- General register organization.

3- Stack organization.
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For the first type of organization sce the 'ig. (4). Where all

operations are performed with an implicd accumulator
register. The instruction format in this type ol compuler use
onc-address ficld for example:

ADD x
Which mean Acc «— Acc + [x] where Acc the accumulator

and [x] the memory word located at the address \.

4 :]r_\-lcmory
and
4 1. 10
e LS Interface
CU )

Fig. (4) Organization of an Accumulator based processor
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An example of a general register type of organization 1s
presented in Fig.5. The instruction format in this type of
computer needs three register address fields, example:

ADD RI,R2,R3
Denote the operation ~ Rl «— R2 + R3



Also this type of computer can support two address
instructions if the destination reg. is the same as one of the
source registers:

ADD RI1,R2 denote R1<—R1+R2
The reason for called this type of Org. general registers
because any one of these reg. can be used to hold data,
memory addressz:s, or the result of arithmetic or logic

operation. Finally there are eight general register (RO through
R7)
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Fig. (5) Organization of general register type.



The stack organized CPU is presented in Fig (6). Computers -
with stack organization would have PUSH and POP instructions |
which require an address field. Thus, the inst. :-

PUSH x
Will push the word at address x to the top of the stack. The stack
pointer is automatically updated. The operation type instructions



do not need address field in stack-organized computers. This is

because the operation is performed on the two items which are
on top of the stack. The inst. ADD here operation code only
with no address field. This operation has the effect of popping

the two top numbers from the stack, adding the numbers and
into the stack. Then the zero-address-type

pushing the sum
instructions which are characteristic of a stack —organized CPU.

Note: - the register temp in Fig. (6) hold the first operand will be
removed from the stack and the second operand will be directly

routed from the stack to the right input of ALU.

°
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Fig. (6) Organization of the stack machine.



To illustrate the influence of the number of addresses on

computer programs, we will evaluate the arithmetic statement:
X=(A+B)*(C+D)

Using zero, one, two, or three address instruction
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Three - address instructions:

ADD
ADD
MUL

R1,A,B
R2C.D
X, Bl R2

Two - address instructions:

MOV
ADD
MOV
ADD
MUL
MOV

RILA
RI,B
R2,C
R2,D
R1, R2
X,RI

Rl [A]+[B]
R2« [C]+[D]
[X]—R1*R2

Rl [A]
R1«< RI1+[B]
R2« [C]
R2« R2+[D]
R1«< R1 *R2
[X]< RI1




One - address instructions:

Load A
ADD B
Store T
JLoad C
ADD D
MUL T
Store X

Zero- address instructions

PUSH A
PUSH B
ADD
PUSH C
PUSH D
ADD
MUL
POP X

ACC+ [A]
ACC+«— ACC+[B]
[T] < ACC
ACC{C]
ACC—ACC+[D]
ACC+—ACCH*[T]
[X]<— ACC

TOS«— A
TOS« B
TOS« (A + B)
TOS« C
TOS«+ D
TOS« (C + D)

. TOS« (C+D)*(A+B)

[X]< TOS

(Where TOS stands for top of stack )



Addressing modes:

The operation field of an instruction specifics the

operation to be performed. This operation must be executed on

some data stored in computer registers or memory words .The
n during program execution 1S
he inst. The addressing
fying the address

ced .Now

way the operands are chose
dependent on the addressing»mode of t
mode specifics a rule for interpreting or modi

field of the inst. before the gperand is actually referen

below the most common addressing modes:



1- Immediate addressing mode:

In this mode the operand is specified in the inst. itself

other words, an immediate—mode inst. has an operand field

rather than an address field. (Here the data as part of the

instruction). The data for the instruction MOV AX , 10FO is
struction Opcode.

supplied operand immediately after the in
2_ Direct addressing mode:

In this mode the effective address is equal to the address

part of the instruction. The operand resides in memory and its
address is given directly by the address field of the inst. The
instruction MOV AX, XRAY -mean store the contents of

memory location XRAY in register AN .



3- Indirect addressing mode :

In this mode the address field of the inst gives the address where
the effective address is store in memory. A few addressing mode
require that the address field of the inst be added to the content

of a specific register in the CPU. The effective address in these

modes is obtained from the following :
Effective address=Address part of instruction + Contént
of CPU reg.

Ex: MOV AX, @ THERE )
B B s L loBSE ©X ]



4- Register addressing mode:

In this mode the operands are in register which reside within the
CPU.
Ex: - MOV DX, CX

5- Register-indirect addressing mode:

In this mode the instruction specifics a reg. in the CPU
whose contents give the address of the operand memory. In
other words the selected register contains the address of the
operand rather than the operand itself.

MOV AX, [SI]
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6-Relative Addressing mode:

In this mode the content of the program counter is added to

the address part of the instruction in order to obtain the effective

address (EA) Mov AL, E PC + arrqj_x

7- Indexed Addressing mode :

In this mode the content of an index register is added to
the address part of the instruction to obtain the effective address.

Ex: MOV AL, [ SI+ array ]

That mean EA = [SI] +array



8-Base-Register Addressing mode:

In this mode the content of base register is added to the
address part of the instruction to obtain the EA. This similar to
the indexed addressing mode except that the register is now
called base register instead of an index register.

Ex: MOV [BXJ+ Betd, AL

Where EA = [BX] + Beta )



Instruction types:

In general, the instruction set of different computers differ
from each other mostly in the way the operands are determined
from the address and mode fields. The actual operations
available in the instructions set are not very different from one
computer to another. Then the general types of instruction are

_ _ ] Sevaein
found on all machine and may be broadly classified in to s

groups, these are:

1- Data transfer instructions.

2- Arithmetic instructions.

3- Logic instructions.

4- Shift and rotate instructions.
5- Program control instructions.
6- System control instructions.

7- I /O instructions.



1- Data transfer instructions:

Data transfer instruction cause transfer of data from one place
in the computer to another without changing the data content
‘The most common transfers are between:

1- Memory and registers.

2- Registers and registers

3- Memory and memory

4- Registers and input or output

\R



The fallowing table (1) gives a list of eight data transfer

instruction used in many computers.

Name Function mnemonic
Load Transfer from memory to reg. LD
Store Transfer from reg. to memory ST
Move Transfer from ( reg. & memory) or MOV
(reg. & reg.) or (memory & memory)
Exchange Swap between (reg. & Teg.) or (reg. & XCH
memory)
Input '] Transfer among registers and Input or IN
Output | Output terminal. OuT
Push '| | Transfer between registers and PUSH
Pop | memory stack. POP

Table (1) typicalg data transfer instructions.




2- Arithmetic instructions:
The four basic arithmetic operations are adding,

subtraction, multiplication, and division. Most computers

provide a list of typical instructions is given in table (2).

Name Mnemonic

Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with barrow SUBB

| Negate (2's complement) NEG

Table (2) typical arithmetic instructions.

\Y
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3- Logical instructions
Logical instructions perform binary operations on strings of bit.

The logical instructions consiger each bit of the operand

separately and treat it as a Boolean variable. Some of typical

logical operations is given in table (3)

Name mnemonic | Example &

And AND 011010 Ho=F1+T8Q11=01100010
Or OR 01101010+14410011=11111011
NOT NOT NOT(01101010)=10010101
Exclusive-(jr XOR 01 lﬁl(_)l(EllllOOll=lOOllOQl

Table (3) typidal logical operations




4- Shift/Rotate instructionsg

The shift operations cause the bits of a word are shifted left or
right, on one end, the bit shifted out is lost, on the other endaO
is shifted in.

But the Rotate_aperationspreserve all of the bits being operated
on- . Then here the bits shifted out at one end of the word are not

lost as in a logical shift but are circulated back in to the other
end .

The table (4) shows three types of these instructions:-

[ Arithmetic shift (left or right)

2- Logical shift (left or right)

3- Rotate shift (Ieft or right) through or without the carry flag:- .

\Y
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‘Name

Logical shift right
Logical shift left
Arithmetic shifi right
Arithmetic shift left
Rotate right |

'Rotate left

' Rotate right threugh carry

‘Rotate left through carry

N ‘—Tiilncmonic

ROLC

Table (4) typical shift / rotate instructions



S5- Program control instructions:

The program control instruction when execute may change

the address value in the program counter and cause the flow of

control to be altered. In other words, these instructions specify
conditions for altering the content of the program counter. The
change in the value of program countcr as result of the
execution of a program control inst; causes break in the

sequence of inst. execution. These instructions may be classified

into the following groups:
1- Unconditional branch instructions.
5_ Conditional branch instructions.
3. Subroutines call instructions.

4- Interrupt-handling control instructions.

¢



Some typical program control instructions are listed in
table(5).

Name Mnemonics
Branch " |BR

Jump JMP

Skip SKP

Call CALL
Return RET
Interrupt INT

Table (5) typical program control instructions.



6- sttem control instructions:

System control instructions are generally privileged instruction
that can be executed only while the processor is in certain
privileged state or is executing a program in a special privilcged
area of memory. Typically, these instructions are reserved for

the used of the operating system.
Some examples of system control operations:
1- A system control instructions may read or alter a control

register.
2- Instruction to read or modify a storage protection key.

3- Access to process control blocks in a multiprogramming

system.
The following some of these instructions:



e —
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Mnemonic Name
 WATT Wait to synchronize
TAS Test and set
, LOCK Lock of coprocessor

L OSCALL | Causes mgrrunt

Table (6) some of system control instructions.



7- I/O instructions :

I/O instructions allow a processor to perform input a;nd
output operation. An input instruction allows a peripheral
to transfer a word to either CPU register or memory.
Similarly, an output instruction enables a processor to
transfer a word to buffer register of a peripheral device.
Then these instructions cause to exchange the data
between the system and t'ﬁC‘ peripheral, and table (7) show

some example of this type of instructions.

Mnemonic Name
START Initialize YO operation
TEST Test /O system
IN Input from device
ouT Output to the device

Table (7) some YO instructions.

Al )
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Chapter two
Microprogramming

Microprogramming is an implemented technique in which a
simpler, cheaper, and faster computer is programmed at level below
assembly language. If the compute;’ is implemented in hardware with
simple instruction” dealing directly with data paths, registers, and

memory and I/O device, we would use the term microprogramming.



2-1 Design of CPU control unit:
In Fig. (1) the general model of CU.

Instruction Register
Control signal

LL within CPU
1S ——

B —
flags - -
- Control . Controltsrgneal
w rom system Bus
nit
Clock i . <
Control signal
to system Bus Control
Bus

Fig. (1) model of the CU.
2-1 Micro-Operations:
Each operation of a computer in execute the program consist of a
sequence of instruction cycles, with one machine instruction for each

cycle. In fact, each of the smaller cycles involves of series of steps.

These steps refer it as micro-operations. The prefix micro refers to the

v



fact that each step is very simple and accomplishes very little. Fig. (2)

show the constituent element of program execution.

Program Execution

Instruction cycle Instructioncycle | ~? rr-=-srescos Instruction cycle

l fetch Fetch Execute | |Interrupt fetch Fetch
== operand

operand
MOP MOP MOP MOP. MOP MOP

Fig. (2) constituent element of program execution.

{ MOP =Micro-Operation }



The fetch cycle: Occurs at the beginning of each instruction cycle and

cause an instruction to be fetch from the memory. The simple fetch
cycle consist of three steps and four micro-operations, several of them
can take place during one step, and can write this sequence of events
as follows (look Fig (3)):

T1i: MAR <& [PC]

T2: MBR < Memory

PC &[PCl+1
T3: IR < [MBR]

A



Address Data
bus  bus

=
£

e

Fig. (3) Fetch cycle

Control
bus

Memory

-



The fetch operand cycle: the next step is to fetch source operand. And
if assume one-address instruction format, the data flow that is indicate

it in Fig. (4) include the following micro-operations ( if the instruction
specifies an indirect address):

T1: MAR < [IR [address]]
T2: MBR €< memory
T3: [IR [address]] < [MBR [address]]

’ Address pata Control
CcCPU bus bus bus

Memory

Control
Unit

Fig. (4) Fetch operand

\94



The Execute cycle: In this cycle there are different sequence micro-

operations for different opcodes. For example the instruction:
ADD R1, x

The following sequence of micro-operation might occurs:

T1: MAR < [IR [address]]
T2: MBR €< memory
T3: R1l < [R1]+[MBR]
Also consider a subroutine call instruction. As an example:
BSA x ( brayech and Save — address instruction )

The following micro-operation need:

T1: MAR < [IR [address]]

MBR <& [PC] . ¢
T2: PC < [IR [address]]

memory < [MBR]
T3: PC € [PC]+1



The interrupt cycle: Atthe completion of the execute cycle, a test is
made to determine whether any enabled interrupts héve occurred. If
so, the interrupt cycle occurs. The nature of this cycle varies greatly
from one machine to another. We present a very simple sequence of
events, as illustrated in Fig. (5):

T1: MBR & [PC]

T2: MAR & save-address

PC < Routine-address
T3:Memory<$ [MBR]



Address pata Control
CPU bus bus bus

Memory

| Control

e’
|

Unit

Fig. (SRiaterrubt cycle



2-2 Control of the CPU: (functional Requirements)

There are some functions that the CPU must be perform which
are called “functional Requirements”. And a definition of these
functional Requirements is the basis for the design and implementation
of the CU. The following three steps process leads to characterization of
the CU:

1- Define the basic elements of the CPU.

2- Describe the micro-operations that CPU perform.

3- Determine the functions that the CU must to be perform to cause
the micro-operations to be performed.

We have already explain stepl and step2. For the step3 the CU

perform two basic tasks:



1-Sequencing: cause the CPU to step through a series of micro-

operations based on the program being executed.

2-Execution: cause each micro-operation to be performed internally,
the CU must have the logic required to perform its sequencing and
execution functions .

The CU must have inputs are:

{clock, IR, flags, control signals from control BUS}

And output are:

{control signals within the tPU ,control signal to control BUS}



2-3 Design methods: BT

Control units are designed in two differ.ent ways:

- Hardwired approach.

- Microprogramming

In the first approach , the control unit is essentially a combination
circuit , its input logic signals are transformed in to a set of input
logic signals , which are the control signals. In the microprogramming
Approach , all control functions that can be simultaneously activated
are grouped to form control words stored in a separate memory
called the control memory. The control words are fetched from the
control memory and the individua! control fields are routed to
various functional units to enable appropriate gates. When these

gates are activated sequentially the desired task is performed.

<<
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2-3-1 Hardwifed Implementation:

The control unit operates on the OPcode, and will perform
different actions for different instructions. There should be a unique
logic for each OPcode. This function can be performed by the de-
coder, in general the decoder will have n binary Input and 2" binary
output. Each of the 2" different input patterns will activate a single
unique output. The clock portion of the Cu issues a repetitive
sequence of pulses. This is useful for measuring the duration of
Micro-operations. However, the cu emits different control signals at
different time units within a signal instruction cycle. Thus we would
like a counter as input to the Cu, T1, T2....... At the end of an inst.

cycle the Cu must feed back to the counter to be-initialize it at T1.

Look for figure (6)



Instruction Register

i1

Clock —

Timing
generator

/ Decoder \
DL g - ime—— I
T1
- R
) ;
i CuU :
= .
>
™n
C01 Cll ---------------- Cm
v

Control signal

Fig. (6) Control unit with decoded inputs

Flags
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The important thinks in the hardware approach the internal logic of
the CU that produces output control signal as a function of its input
signals. For each control signal there is a Boolean expression as a
function of the inputs. These Boolean equations that define the
behavior of the CU and hence of the CPU.

In modern complex CPU, the number of Boolean equations needed

to define the CU is very large. The task of implementing the

combination circuit that satisfies all of these equations become

extremely difficult.
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~ 2-3-2 micro-programmed implementation: '

Some time that is difficult to design and test piece of hardware.
Also, the design is relatively inflexible (for example, it is difficult to
change the design if one wishes to add a new machine instruction).
Then, there is an alternative that is implementing a mic.rc.i-
programmed unit. | |
Consider that for each micro-operation the CU generate a set of
control signal. Thus, for any micro-operation, each control lin'e_
emanating from the CU is either on or off. This condition can
represent by a binary digit for each control line. So, we could
construct control word (CW) in which each bit represent one control

line. Then, each micro-operation would be represented by different

pattern of 1 and 0 in the control word.

24



Note: the term micro-instruction refers to the micro-operation
occurring at one time and a sequence of these instructions is known

as micro-programming or firmware.

The control word put in memory and has a unique address and
also add address field to each CW, to indicating the location of the
next CW to be executed. The result is known as a horizontal micrq-l
instruction and Fig. (7) show the format of the microinstruction or

CW.



Micro-instruction address

Jump condition

System bus control signals

Iinternal CPU control

Fig. (7) Control word (horizontal micro-instruction)

There are one bit for each internal CPU control line and are bit for
each system bus control line. There is a condition field indicating the
condition and which the should be a branch, and there is a field for the

address of the next micro-operation to be executed.

25



These CWs could be arranged in a control memory (CM) which contains
a program that describes the behavior of the CU. That means we could
implement the CU by simply executing that program. The Fig. (8) shows
the key elements of such implementation. The set micro-instructions
are stored in the control memory (CM). The control"address register
(CAR) contain the address of the next micro-instructions to be read, and
the control buffer register (CBR) is to transferred to it the micro-
instructions that read from CM. then the sequencing logic unit (SLU) to
load the CAR and issues a read command. The following steps describe
the control unit function: ) ‘

1- the SLU issues a read comménd to the CM.

2_ the word whose address in the CAR is read into the CBR.

3- The content of the CBR generate control signals and next-address

information for the SLU.

The SLU loads new address into the CAR based on the next

H
i



address information from the CBR and the ALU flags.

In Fig. (8) the upper decoder translate the opcode of the instruction
into the CM address, where it is used for horizontal micro-instructions,
but the lower decoder is used for vertical micro-instructions as appear
in Fig. (9), where here the code is used for each action to be perform,

and the lower decoder translates this code into individual control

signals.

26
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ALU flag + Sequence Control address register
s+ Logic &

Clock > Unit

| Control
Memory
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Control buffer register
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Fig. (8) Functioning of micro-programmed control unit




N R
Micro-instruction

address
Jump condition

} Function codes

Fig. (9) Vertical micro-instruction.
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2-3-3 Advantages and disadvantages:

The principle advantage of the used of micro-programming to
implement a CU is thaY it simplifies the design of the CU. Thus it is
both cheaper and less error to implem&nt. A hardware CU must
contain complex logic for sequencing thmough the many micro-
operations of the instruction cycle. On the other hand, the decoder
and sequencing logic unit of a micro-programming.

The principle disadvantage of micro-programmed unit is that it will
be somewhat slower than a hardware unit. Despite this, micro-
programming is the dominant technique for implementing CU in

contemporary computers, due to its ease of implementation.
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Chapter Three
Memory management

Memory is that part of computer system that used for the storage
and then retrieval of data and instruction. The memory system
cost is the significant fraction of the cost of the total system. The
system performance is largely dependent on the organization
storage capacity. And speed of operation of the memory system.

Computer memory system can be logically divided into three

groups:



|

Internal memory (storage in CPU): This refers to the set

of registers in the CPU. Also the CU may require its own

memory.

Primary memory: is the storage area in which all
programs are executed. The CPU can directly access only

these items that are stored in primary memory. Therefore

all programs and data must be within the primary memory

to speed up execution.

Secondary memory: refer to the storage medium

comprised of slow device such as magnetic tapes and

magnetic disks. These devices are used to hold data files

and programs. Such as compilers and data base

29



management systems, which are not frequently needed by

the processor. Called also (Auxiliary memory).

3-1 Characteristics of memory system:
The complex subject of computer memory is made more

manageable if we classify memory systems according to their
key characteristics:
> Location: as we say there are memory internal computer (in
CPU and main memory) and external (secondary memory).
» Capacity: internal memory is expressed in terms of bytes or
words (common word lengths are 8, 16, and 32 bits).

External memory is expressed in bytes.



> Unit of transfer: the unit of transfer is equal to the number
of data lines into and out of the memory module, this is
often equal to the word length (this is the number of bits
read out or written into memory at a time.

>» Access method: there are four types which is:

1- sequential access,
2- Direct access,

3- Random access,
1 \ -

il
4- Associlative access.

30



> Performance: Three performance parameters are used :

1-Access time: this is the time is taken to perform read or

write operation (Random access). Or the time is take

position the read-write mechanism at the desired location.

2- memory cycle time: Access time + any additional time

required before the second access can commence.

3- Transfer rate: the rate at which data can be transferred into
or out of a memory unit. For random-access memory it is
equal to 1/(cycle time). But for non-random access memory
is:

Tn=Ta + N/R

Where:
T = Average time to read or write N bit.
N = Number of bits.

R = Transfer rat in bit per second.



3-2 The memory Hierarchy

Most computers would run more efficiently if they were

equipped of with additional storage to the capacity of the main

memory. However, to meet the performance requirements, the
designer needs to used expensive and lower capacity memory
with goals can not rely one a single memory, but employ

memory hierarchy as shown in Fig.(1).

31



Increasing Increasing
capacity speed

main memory

long term storage, e.g.. hard drive

v

Figure 1 Block Diagram of a Standard Memory Hierarchy

If we move one this technology from top to down the following
occur:

(a) Increasing in cost, (b) Increasing capacity,
(¢) Increasing access time, (d) Decreasing frequency of access

of the memory by the CPU.



The hierarchical memory is organized in four level as shown in
Fig.(1), where the CPU directly Communicates with level 1 and
level 1 communicate with level 2 and so on. In general all
information accessed by the CPU is found in level 1, and a copy
of all information will be held in the lowest level, if the required
word is not find in level 1 then it is searched for it in the lower
levels. Suppose the missing word is found in level j , where
j >1, it is then transferred to level j-1 and from level j-1 to level

j-2 and so on, until it reaches to level 1. This transfer is essential

because the CPU can access only level 1.
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3-3 memory interleaving:

To overcome the different in speed between the memory
and the CPU, employed many modules of memory that allows
overlap or simultaneous access of memory cells in different
modules. The characteristic of memory modules in a manner
that allows access overlap is called interleaving. In the

interleaving technique, the words in the modules are arranged so

that N Sequential RS, PRt T AN SO0 —t It ' <=

L

address a, atl,at2, ....... , a+N-1 fall in N distinct modules,
then the method for distribute the sequential address for
sequential words on the different modules is following :

M = is the number of modules

L. = number of addresses in the module (Max)

i = number of the current modules



Then can be arrange the sequential address over module as:
K*M+i
Where 0 <K <L-1, 1<i<M

Example: M =4, L=3,1= 3 find the sequence addresses in
=l =2 =3 i=4

this module:
al a2 a3 a4
K=0 — 0*4+3 — a3
as ab a7 a8
- *
K=l -2 1443380 a9 | (alO] |all| [al2
K=2 — 2*4+3 — all J
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3.4 Cache memory:

[his memony 1s a fast and small memory that resides

) - . . ’

between mam memony & the CPU as illustrated m hig (2)
W here the active portions of the programs and data are placed in

it then the average memory access time can be reduce.

Block Transfer

Word Transfer ~A
f\A_/\

CPU | Cache I Main Memory

Figure 2 : Cache and Main memory




The cache memory access time is less than the access ime
of main memory by factor of 5 to 10. Then the fundamental
idea of cache organization is that by keeping the most frequently
accessed instructions and data in the fast cache memory. The
average memory access time will approach the access time of
the cache Although the cache is only a small fraction of the size
of main memors. a large fraction of memory requests will be
found in the cache memory because of the locality of reference
property of programs. Fig.(3) show the structure of cache and
main memory system. ?h:mor} consists of up to 2" addressable
word. For mapping M . this memory is considered to

consist of a number of fixed length blocks of K word in each

that is . there are M= 2"/ K blocks.
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Cache consist of C slots of K words in each and ( C <= M ). At
any time, some subset of the blocks of memory resides in slots
in the cache. If a word in a block of memory is read, that block
is transferred to one of the slots of the cache. Since there are
more blocks than slots. Each slot includes a tag that identifies
which particular block is currently being stored. The tag is

usually a portion of the main memory address.

Slon Momorny
Nummbor iy 3lock addross
L8] (%)
1 1
= 2 Block
3 (K words)
-
S ! | (i onts
< i
Blow b Lempth
-— _—
A Waaade -
ta) Cache =
-
Block
>t 1

W oord »
[ cngeth

tH) Miun momors

Figure 3: Cache/Main Memory Structure



3.4.1 Cache operation - overview

d

Q
Jd
Q

CPU requests contents of memory location

Check cache for this data

If present, get from cache (fast)

If not present, read required block from main memory to

cache

a Then deliver from cache to CPU
o Cache includes tags to identify which block of main memory

is in each cache slot
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3.5
4% Mapping process:

The transformation of data from main memory to cache
memory is referred to as mapping process. There are three types

of mapping procedures are interest:



1. Associative mapping:

The associative memory stores both the address and content
(data) of the memory word, as in figure (4). The diagram shows
three words stored in the cache. The address value of 15 bits is
shown as five-digit octal number and its corresponding 12 bit

word is shown as 4 digit octal number. The CPU address of 15

bits is placed in the argument register and the associative

memory is searched for matching address. If the address is

found than the corresponding 12 bit data is sent to CPU.

Otherwise, if no match, the main memory is accessed for the

word.

CPU address (15 bits)

!

Argument register

Address - Data
01000 3450
02777 6710
22345 1234

Fig. (4) Associative mapping cache (all numbers in octal)
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2. Direct Mapping: The possibility of using random-access
memory is shown in figure (5). The CPU address of 15 bits is
divided into two fields. The 9 least significant bits is the
index field and the remaining six bits form the tag field. Then
cache word in cache consists of the data and its associated
tag. Where the main memory needs address include both the
tag and the index bits and the No. of bit of Index field is
equal to the No. of address bits to access the cache when the
CPU generates memory request, the Index field is used to
access the cache and the tag field compare with tag in the
word read from the cache, if match there is hit and the desired
word data in the cache, if no match (miss) this required word

is read from main memory and then stored in the cache

together with the new tag.



Tag Index

1 l |

000

00 000 32kB x 12 bit 512B x 12 bit
Octal Main memory Octal cache memory
Address Address=15 bits | Address Address= 9 bits
Data =12 bits Data =12 bits
77 777 777

Fig. (5) Addressing relation ship between main and cache
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Memory Index

address Memory data address Tag Data
00000 1220 000 00 1220
00777 2340
01000 3450
01777 4560 777 02 6710
02000 5670
(b) Cache memory
02777 6710
Y Y

(a) Main memory

Figure (5) Direct mapping cache organization)



3. Set-Associative mapping: Here each data word is stored
together with its tag and the No. of tag-data items in one
word of cache is said to form a set. An example of a set-
Associative cache organization for a set size of two is shown
in figure (6). Each Index address refers to two data words and
their associated tags. Each tag requires six bits and each data
word has 12 bits, so the word length is 2x(6+12) = 36 bits.
An Index address of nine bits can accommodate 512 words.
Thus the size of cache memory is 512x36. See that in fig (6)
the words stored at addresses 01000 and 02000 of main
memory are stored in cache at index address 000, also
similarly the words at address 02777 and 00777 are stored in
cache at Index address 777. When the CPU make memory
request, the Index used to access the cache and the tags field
of the CPU address is then compare with both tags in the

cache to determine if a match occur.



Index Tag Data Tag Data

000 | 01 | 3450 02 5670
|

777 | 02 6710 00 2340

Fig. (6) Two way set associative mapping cache
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4. Tagged Storage: Often each memory cell has bits associated
with it. For special meanings. This bits is propagated and
checked by hardware circulars as a means of verifying the
correct retention of information in the memory cell.

In practice, tagging of each memory location in main
memory. For conveying information as (1) Instruction /data.
(2) Defined /undefined, (3) Read-Only/ read-write, (4)
primitive data type.

The tagged store increases the width of each memory cell
and, thus, increases total memory size. If tags exist, it is
implied that the logic circuits to check data will exist.

If tagged storage is implemented to include not only main
memory but follows the data into cache memory, stacks,
registers, etc. then the errors arising from undefined data,

wrong type would be eliminated.



Microcomputer Memory:
There are two types of memory chips used in

microcomputer system. RAM (random Access memory) and
Rom (Read only memory). RAM is used for storing data, -
variable parameters, and intermediate results that need
updating and are subject to change. Rom is used for storing
programs and table constants that do not change in value one

the production of the microcomputer system is complete.
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Ram and RoM Chips:
The block diagram of RAM chip is shown in fig (7). The

capacity of memory is 128 words of 8 bits in each. This
required 7 bit address and 8 bit bidirectional data bus. The
read and write inputs specify the memory operation and the
two chip select control inputs CS;, CS2 are of enabling the

chip only when it is selected by the microprocessor.

Chip select 1| —{ esl
Chipselect2— CS2
Read — RD 128 x8 |«— 8-bitdata bus

writ — WR RAM
7-bit Address — AD7

Fig (7) The block diagram of RAM chip



The function table listed in the following show the

operations of RAM chip, when the unit is in operation when

CS, and CcS2 =0.

CS, €S2 RD WR

Memory function

State of data bus

0 0 x X Inhibit High-impedance
0O 1 x Inhibit High-impedance
1 0 O Inhibit High-impedance
1 0 O 1 Write Input data to RAm
. © 4 X Read Output data from RAm
1 1 x X Inhibit High-inpedace




The Rom chip have 9-address line and the CS;=1 CS2=0 to

operate and do not need to read and write see figure (8).

Chip select | — ¢s1

Chip select2— CS2 512x 8
ROM |—— 8-bit data bus

9-bit Address — AD

Fig (8) typical ROM chip



Memory Connection to microprocessor:

The connection of memory chip to the microprocessor is

shown in Fig. (9) which show a memory capacity of 128 of
RAM and 512 bytes of ROM. Each RAM receives the seven
low-order bits of the address bus to select one of 128 bytes. The
particular RAM chip selected from line 8 and 9 by using 2x4
decoder whose output go to CS1 input in each RAM example
when line 8 and 9 equal 00 then the first RAM chip select and
when equal 01 the second selected and so on . The selection
between RAM and ROM is achieved by bus line (10). The
RAM’s are selected when the bit in this line is O and the ROM is
selected when the bit is 1. And the other chip select CS1 in
ROM is connected to the RD control line for the ROM chip to

be enabled only during a read operation.
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Micro Processor

Address bus

- —— <.
16-11 10 9 8B 7-1 RD WR data bus
—=
Decoder
3 2.0
L » CSI1
> CS2 128x8
- > RD RAMI
WR
AD 1-7
> CS1

> CS2 128x8
> RD RAMZ2
WR

AD 1-7

CS1

CS2 128x8
RD RAMS3
WR

AD 1-7

Y

CS1

CS2 128x8
RD RAMA4
WR

AD 1-7

2R

CsSi1

—— o+ &s5 si2xs

ROM

}AD 1-9
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Chapter Four
Pipeline and Vector Processing

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is key to making processors fast.

pipeline instruction classically take five steps:

1.

!‘w

Fetch instruction from memory.

Read registers while decoding the instruction. The format of MIPS instruc-
tions allows reading and decoding to occur simultaneously.

Execute the operation or calculate an address.
Access an operand in data memory.

Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following

example

shows that pipelining speeds up instruction execution



Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to eight instructions: load

word (1w), store word (sw), add (add), subtract (sub), and (and), or (or),
set-less-than (s1t), and branch-on-equal (beq).
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Compare the average time between instructions of a single-cycle im.ple-
mentation, in which all instructions take 1 clock cycle, to a }’iPe!'"ed
implementation. The operation times for the major functional units in this ex-
ample are 200 ps for memory access, 200 ps for ALU operation, and 100 ps for
register file read or write. As we said in Chapter3, in the single-cycle model ev-
ery instruction takes exactly 1 clock cycle, so the clock cycle must be stretched
to accommodate the slowest instruction.



B ANSWER 287

Figure 4.1 shows the time required for each of the eight instructions. The sin-
gle-cycle design must allow for the slowest instruction—in Figure 4.1 it is
1 w—so the time required for every instruction is 800 ps.

Figure 4.2 compares nonpipelined and pipelined execution of three load
word instructions. Thus, the time between the first and fourth instructions in
the nonpipelined design is 3 x 800 or 2400 ps.

All the pipeline stages take a si:f;le clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation. Just as the single-cycle
design must take the worst-case clock cycle of 800 ps even though some in-
structions can be as fast as 500 ps, the pipelined execution clock cycle must
have the worst-case clock cycle of 200 ps even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 X 200 ps or 600 ps. :

instruction

& ALY 25

Register | Yotar.

AR A
3 write :£§. time_’

Instruction class =& .

operation

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store word (Sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add. sub, and, 200 ps 100 ps 200 ps 100 ps 600 ps
cor,slt)

Branch (beq) 200 ps 100 ps 200 ps SO0 ps

FIGURE 4.1 Total time for each instruction calculated from the time for each compo-
nent.



1200 1400 1600 1800

Program
execution 200 400 600 800 1000
order Time T 7 T T T T T T T

{in instructions)
Data

W $1. 100(80) [ nsteron g ay Reg
Data
Reg

gm $2, 200(S0) 800 ps " [wnstruction) oo | Ay Daa

14

| - -

' o S E— ———
800 ps

Program

execution 200 400 600 800 1000 1200 1400

order Time T 7 T T T 7 T =

(in instructions)

Instruction, Data 1 §
,M $1, 100(80) | "> /{Rog ALU an
w $2. 200($0) 200 ps | oc>n Reg| A | D32 Ingg
w $3, 300($0) 200 ps|"ton  lpeg| au | D2 fpeg

200 ps 200ps 200ps 200 ps 200 ps

FIGURE 4.2 Singlecycie, nonpipelined execution in top versus pipelined execution in
bottom. Both use the same hardware components, whose time is listed in Figure4.2 In this case we see a

fourfold speedup on average time between instructions, from 800 ps down to 200 ps.
. The computer pipeline stage times are limited by the slowest resource, either the

ALU operation or the memory access. We assume the write to the register file occurs in the first half of the
clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.



We can turn the pipelining speedup discussion above into a formula. If: the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Time between instructions 4. .4 = Time b;twet;"s;‘m.d‘::mw
umber of pipe stages

Under ideal conditions and with a large number of instructions, the speedup from
pipelining is approximately equal to the number of pipe stages; a five-stage pipe-
line is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. In addition,
pipelining involves some overhead, the source of which will be more clear shm:tly.
Thus, the time per instruction in the pipelined processor will exceed the mini-
mum possible, and speedup will be less than the number of pipeline stages.



Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it’s 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of instructions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined example; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 x 200 ps + 1400 ps, or 200,001,400
ps. In the nonpipelined example, we would add 1,0000,000 instructions, each tak-
ing 800 ps, so total execution time would be 1,000,000 X 800 ps + 2400 ps, or

800,002,400 ps. Under these ideal conditions, the ratio of total execution times for
real programs on nonpipelined to pipelined processors is cdose to the ratio of
times between instructions:

800,002,400 ps _ , o _ 800 ps
200,001,400 ps 200 ps

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruc-
tion throughput is the important metric because real programs execute billions of
instructions.
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4-2 Instruction Pipeline Design

A stream of instructions can be executed by a pipeline in an overlapped manner. We
describe below instruction pipelines for CISC and RISC scalar processors. Topics to be
studied include instruction prefetching, data forwarding, hazard avoidance, interlocking
for resolving data dependences, dynamic instruction scheduling, and branch handling

techniques for improving pipelined processor performance.

4-2-1 Instruction Execution Phases

A typical instruction execution consists of a sequence of operations, including
instruction fetch, decode, operand fetch, execute, and write-back phases. These phases
are ideal for overlapped execution on a linear pipeline. Each phase may require one or
more clock cycles to execute, depending on the instruction type and processor/memory

architecture used.



Pipelined Instruction Processing A typical instruction pipeline is depicted in
Fig. 4-3 The fetch stage (F) fetches instructions from a cache memory, presumably one
per cycle.. The decode stage (D) reveals the instruction function to be performed and
identifies the resources needed. Resources include general-purpose registers, buses, and
functional units. The issue stage (I) reserves resources. Pipeline control interlocks are
maintained at this stage. The operands are also read from registers during the issue
stage.

The instructions are executed in one or several ezecute stages (E). Three execute
stages are shown in Fig. 4-32. The last writeback stage (W) is used to write results
into the registers. Memory load or store operations are treated as part of execution.
Figure 4-3 shows the flow of machine instructions through a typical pipeline. These
eight instructions are for pipelined execution of the high-level language statements X =
Y + Z and A = B x C. Assume load and store instructions take four execution clock
cycles, while floating-point add and multiply operations take three cycles.

The above timing assumptions represent typical values used in a CISC processor.
In many RISC processors, fewer clock cycles are needed. On the other hand, Cray
1 requires 11 cycles for a load and a floating-point addition takes six. With in-order
instruction issuing, if an instruction is blocked from issuing due to a data or resource

dependence, all instructions following it are blocked.

47



Figure 4-3b illustrates the issue of instructions following the original Progract order.
The shaded boxes correspond to idle cycles when instruction issues are blocked due t0
resources latency or conflicts or due t0 data dependences. The first two load instructions
issue on consecutive cycles. The add is dependent on both loads and must wait three
cycles before the data (Y and Z) are loaded in.

Similarly, the store of the sum to memory location X must wait three cycles for
the add to finish due to a flow dependence. There are similar blockages during the
calculation of A. The total time required is 17 clock cycles. This time is measured
beginning at cycle 4 when the first instruction starts execution until cycle 920 the last
instruction starts execution. This timing measure climinates the unduly effects of the
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Figure 4-3 Pipelined execution of X = Y 4+ Z and A = B x C. {Courtesy of James
Smith; reprinted with permission from IEEE Computer, July 1989)

pipeline “startup” or “draining” delays.

Figure4-3¢ shows an improved timing after the instruction issuing order is changed
to eliminate unnecessary delays due to dependence. The idea is to issue all four load
operations in the beginning. Both the adu and multiply instructions are blocked fewer
cycles due to this data prefetching. The reordering should not change the end results.
The time required is being reduced to 11 cycles, measured from cycle 4 to cycle 14.



Thank you ...

Q&A



Chapter five

Part 1



T e TG

~C otf'(’\—s

Chapter S
Multiprocessors

In this chapter, we study system architectures of multiprocessors and multicom-
puters. Various cache coherence protocols -

5.1 Multiprocessor System Interconnects

Parallei processing demands the use of efficient system interconnects for fast com-
munication among multiple processors and shared memory, I /O, and peripheral devices.
Hierarchical buses, crossbar switches, and multistage networks are often used for this
plrpose.

A generalized multiprocessor system is depicted in Fig. 5.1.



Each processor P; is attached to its own local memory and private cache. Multiple
processors are connected to shared-memory modules through an interprocessor-memory
network (IPMN).

The processors share the access of I/O and peripheral devices through a processor-
1/0 network (PION). Both [IPMN and PION are necessary in a shared-resource mul-
tiprocessor. Direct interprocessor communications are supported by an optional inter-
processor communication network (IPCN) instead of through the shared memory.

Network Characteristics Each of the above types of networks can be designed
with many choices. The choices are based on the topology, timing protecol, switching
method, and control strategy. Dynamic networks are used in multiprocessors in which
:he interconnections are under program control. Timing, switching, and contrcl are
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(Shared Memory)

SM;, SM, SM,,,
oo @
IPMN
(Shared VO and Peripherals)
® o o isk =
(:C'Q ————— Disk Units
——— Tape Units
LM & Pn | == s
E = pion|  Frnter
b p=< ———— Temminals
- . .
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LM Py = T .
] — Network
_] eece
IPCN

Legends: IPMN (Inter-Processor-Memory Network)
PION (Processor-IYO Network)
TIPCN (Inter-Processor Communication Network)
P (Processor)
C (Cache)
SM (Shared Memory)
LM (Loczal Memory}

Figure 5.1 Interconnection structures in a generalized multiprocessor system with
local memory, private caches, shared memory, and shared peripherals.



three major operational characteristics of an interconnection network. The timing con-
trol can be either synchronous or asynchronous. Synchronous networks are controlled
by a global clock that synchronizes all network activities. Asynchronous networks use
handshaking or interlocking mechanisms to coordinate fast and slow devices requesting
use of the same network.

A network can transfer data using either circuit switching or packet switching. In
circuit switching, once a device i granted a path in the network, it occupies the path for
the entire duration of the data transfer. In packet switching, the information is broken
into small packets individually competing for a path in the network.

Network control strategy is classified as centralized or distributed. With centralized
control, a global controller receives requests from all devices attached to the network and
grants the network access to one or more requesters. In a distributed system, requests
are handled by local devices independently.
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5.2 Hierarchical Bus Systemns

A bus system comnsists of a hierarchy of buses connecting various system and sub-
system components in a computer. Each bus is formned with a nuraber of signal, control,
and power lines. Different buses are used to perform different interconnection functions.
) .In general, the hierarchy of bus systemns are packaged at différent levels as depicted
in Fig. 52. including local buses on boards, backplane buses, and [/O buses.

Local Pom;tb

CPU Board f Memory Board
(8 V) 10C Memory Celle
Local Bus Bus
IF " MC

\
< System Bus (on backpianes) >

VO Board Communication Board
v ] [
A
Deta Bus Data Bus
Diakk & Printer Network
(Ethemet, otc.)

Tape Units or Piotier

Legends: [F (Intexface logic), LM (Loca! Memary)
10C (/O Coatrolier). MC (Memory Conwroller)
1OP (/O Processor), COC (Communication Conooller)

Figure 5.2 Bus systems at board level, backplane level, and I/0 level.



Local Bus Buses implemented on printed-circust boards are called local buses. On a

Srocessor board one often finds a local bus which provides a common communication
path among major components (chips) mounted on the board. A memory board uses a
memory bus to connect the memory with the interface logic.

An 1/0 board or network interface board uses & data bus. Each of these board
buses consists of signal and utility lines. With the sharing of the lines by many 1/0
devices, the layont of these lines may be at different layers of the PC board.
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5.3 Cache Coherence and Synchronization Mechanisms

.Cache coherence protocols for coping with the multicache inconsistency problem are
considered below. Snoopy protocols are designed for bus-connected systems. Directory-
ba.sed. pr?toools apply to network-connected systems.

5.3.1 The Cache Coherence Problem

In a memory hierarchy for a multiprocessor system, data inconsistency may OCCUr
between adjacent levels or within the same level. For example, the cache and main
memory may contain inconsistent copies of the same data object. Multiple caches may
possess different copies of the same memory block because multiple processors operate
asynchronously and independently.

Caches in a multiprocessing environment introduce the cache coherence problem.
When multiple processors maintain locally cached copies of a unique shared-memory
location, any local modification of the location can result in a globally inconsistent view
of memory. Cache coherence schemes prevent this problem by maintaining & uniform
state for each cached block of data. Cache inconsistencies caused by data sharing,

process migration, or I/O are explained below.



Inconsistency in Data Sharing The cache inconsistency problem occurs only when
multiple private caches are used. In general, three sources of the problem are identified:
sharing of writable data, process migration, and I/O activity. Figure 5.3 illustrates the
problems caused by the first two sources. Consider a multiprocessor with two processors,
each using a private cache and both sharing the main memory. Let X be a shared data
element which has been referenced by both processors. Before update, the three copies
of X are consistent.

If processor P; wriles new data X' into the cache, the same copy will be writ-
ten immediately into the shared memory using & write-through policy. In this case,
inconsistency occurs between the two copies (X’ and X) in the two caches (Fig. 5.3 a).

On the other hand, inconsistency may also occur when a write-back policy is used,

as shown on the right in Fig. 5.3 a. The main memory will be eventually updated when

the modified data in the cache are replaced or invalidated.

Process Migration and I/O Figure 5.3b shows the occurrence of inconsistency
after a process containing a shared variable X migrates from processor 1 to processor 2
using the write-back cache on the right. In the middle, a process migrates from processor
2 to processor 1 when using write-through caches.

In both cases, inconsistency appears between the two cache copies, labeled X and

X'’. Special precautions must be exercised to avoid such inconsistencies. A coherence

protocol must be established before processes can safely migrate from one processor to

another.

Inconsistency problems; may occur during I/O operations that bypass the caches.
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Figure 5.4 Cache inconsistency after an I/O operation and a possible solution.
(Adapted from Dubois, Scheurich, and Briggs, 1988)



transactions. If a bus transaction threatens the consistent state of a locally cached
object, the cache controller can take appropriate actions to invalidate the local copx.
Protocols using this mechanism to ensure coherence are called snoopy protocols because
each cache snoops on the transactions of other caches.

On the other hand, scalable multiprocessor systems interconnect processors using
short point-to-point wires in direct or multistage networks. Unlike the situation in
buses, the bandwidth of these networks increases as more processors are added to the
system. However, such networks do not have a convenient snooping mechanism and
do not provide an efficient broadcast capability. In such systems, the cache coherence
problem can be solved using sorae variant of directory schemes.

In general, a cache coherence protocol consists of the set of possible states in the
local caches, the state in the shared memory, and the state transitions caused by the
messages transported through the interconnection network to keep memory coherent.
In what follows, we first describe the snoopy protocols and then the directory-based
protocols. These protocols rely on software, hardware, or a combination of both for
implementation.
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despite any desire 0 revolutionize comnputer architecture, von Neumann machines will continue to be the
best understood base upon which to build for many years,

2.3. Dataflow Architectures

eézwmww ot =yt i g 770 oo

communicaﬂonismumgl mtbe fv'to cleate and match
tokens for scheduling ev mmtg:%mmmdyw can certainly be
done by the compiler. In a dataflow machine, however, is de riguewr. This

implies, formsmwe.mnmenmcmexewtcmekmwdminagnphscdﬁcdpamnmcpmduaof
the critical path length and the pipeline depth. One is left to wonder if it might not be possible, even
desirable, to optimize this by performing the necessary synchronization explicitly, and relying on more
traditional (read: well-understood) mechanisms for instruction sequencing in the remainder of the cases.
The uncertainties in this argument-are the fraction of time wherein synchronization is necessary, and the
complexity of the mechanisms required.



3. Synthesis

A simple view is that von Neumann and dataflow machines are not, in fact, orthogonal but rather sit at
opposite ends of a spectrum of architectures. One might speculate that there are families of machines
along this spectrum ) trade instruction scheduling simplici pemrlowlcvclsyndnodnﬂon.
One might further ate that for some figure of archi merit, taking into account hardware
complexity, instruction scheduling flexibility, and synchronization support, that there exists some op-
timum point between the two extremes, i.¢., a hybrid architecture which synergistically combines features
of von Neumann and Dataflow. g

Starting with the observation that the costs associated with dataflow instruction sequencing in many
instances are excessive, others have suggested that w ideas should be used at ; -
procedural level [23] thereby avoiding dataflow ué%ciu while seéningly m.
vantages. This view is aimost correct, but ignores the importance of the fundamental issues discussed
above. Restricting architectures to this "macro dataflow” concept would amount to giving up what is
possibly a dataflow machine’s biggest feature - the ability to context switch efficiently at a low level to
cover memory latency.

Given this, one is led to ask the following question: what mechanisms at the hardware level are
essential for tolerating latency and synchronization costs? Based on various studies of parallel machines
[2, 7, 12, 22} the following conclusions are drawn:

e In general, on a machine capable of supporting multiple simultaneous threads of computa-
tion, executing programs expressed as a total ordering of instructions will incur more latency
cost than will executing a logically equivalent partial ordering of the same instructions. In
fact, for a class of programming languages which are non-sequential [33], expressing
programs as a partial ordering is a necessary condition for avoiding deadlock. It is assumed,
therefore, that the machine language must be able to express partial ordering.
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*In any mmmrmmmmmmwmmmwmof
time to complete (e.g., those involving communication). Such operations can be cither
atomic, single phase operations or split, multiphase operations?. Multiphase processing will
always minimimlmywstovasingleplwmminzbmscﬂnpownidcﬂmm
covering processor idle time. Basedonﬂnﬁeqwlcyofﬂwocmrmofmmw
operations (2] in all but the most trivial parallel computations, efficient multiphase
requires specific hardware mechanisms (3, 12). Multiphase instructions are commonly
referred to as split transactions.

The remainder of this section describes a new, hybrid architecture along with its instruction set and
programming model. mmhitecnncmbeviewedadﬁmmevoluﬁonofdmﬂowmhiwmin
the direction of more explicit (i.c., compiler directed) control over instruction execution order, Or as an
evolution ofvaummmadﬁnmmdndimﬁmofmrhmdwmsnpponforsymhmﬁwmm
better tolerance of long latency operations. 'l‘hestn.td)‘-ofthisarclliecmrewilltocusonthequueﬁcyOf
unavoidable run-time synchronization and, therefore, the applicability of compiler-directed control over
instruction scheduling in a general-purpose multiprocessor.



3.1. Scheduling Quanta

Thectmtralideaofthisncwarchiminvolmsonbereconﬁdemialofthcbasicunitofwotkinboﬂl
dataflow and von Neumann architectures. TbeunitofparandcompnmﬁoninavonNemnmmachincis
the zask. Imer-taksymhmﬂzﬂimistypicaﬂyexpmdvewbmk:ﬂieswsoﬁwam-implanﬂed
mechanisms. Such cost favors large tasks which synchronize infrequently. Within a task, synchroniza-
tbnofpraducaaMwmmaimuuaimsismﬁIﬂyimpﬂdtMMOrdeﬁngofW Between

mechanism. Co:ncnswimlﬁngisummnymwhmwyaﬂnsymhmiunonpoim.mm

tions. Duﬂngsuchamn.msu'ucdonsﬁuntbesamccomenmmmepipe pipe beat. This
kindoflocalitycanoftu:beexploiwdamehardwate'levd:Mweva'.’nctusingﬂ)elocalitymayimplya
loss of paraliclism.

Mhinshatpmwuzdauﬂowmoddwmmebﬁcmﬁtofpmandmpmﬁmkme
instruction. Inter-task (i.e., inter-instruction) synchmnizttionisperfotmedlmpliddy by the hardware; the
s!nglcmstnxcﬁon'task'isnotawakcnedumﬂitsopemﬂsucavﬁhblc. Context switching can and does

maynotemcrﬂr:pipcnnefotanmnbcrofcydcsequalwmcpipdinedepm. The intervening cycles
mmbemledbyimu\mmﬁmmmmadofMMpmﬁuybmwmﬁlyMam
context. Notsu:pﬁsingly.thismodelishigmyparand,butthcpannensmcomesnmecxpenscofsomc
lost locality. £ >

3.1.1. Repartitioning Dataflow Graphs

Cozwidcragmphforasim;ﬂeoodeblock(ﬁgm}l). Note that there is some potential parallielism
aackofimerdcpambctwemhmﬁam)inﬂﬂsm For example, instructions I1 and IS do not
depend on one another. mydcpcndonlyonmeavailabilityofﬂtcval\ma.b.amic.

Mo:eperﬁ:mttodﬁsdiswssionmtbeinsu\mﬁa\softhegnphwhidxdirecdydepmdonorwmﬁwr.

lnstructionleandB.forexample.haveaniﬁcnsﬁngdepmdence. Having executed I2, it is known
ﬂmﬂwwm&mmmmummitmwmmnaﬂampﬂeﬂme

fA-qummmemuavminp-&mmmﬁ.wd-mM
pricr to using the result '
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Figure 3-1: A Sample Datafiow Graph



constant. mmmmmm(n,m)&mamewmmqnmmm
output characteristics as'any other instruction, and which has similar synchronization requirements.

mmhabcnmemggadmwimmundanﬂowcommumyﬂmamhamgaﬁmbecxpmmd.if
only to improve performance. There is a danger in doing this by altering the machine instruction set,
because any statistically beneficial aggregation will have been highly dependent on compilation and code
generation techniques used while collecting said statistics. That is, the choice of aggregated instructions
may vary as irnprovements are made to the compiler(s). This suggests that the issues of synchronization
should be separated from the issues of opcode semantics.

A slightly more sophisticated view is to permit the compiler to aggregate an arbitrary collection of
instructions according 10 any criterion of optimality into a unit of schedulability. Each such unit is called
a scheduling quantum, or SQ. Theirsize.irmr-SQdcpmdaw.mdcomanmdcwrmhwducompnc

- time. In the Figure, two SQ’s are shown, but many other aggregations are possible.

3.1.2. Partitioning Strategies

Although the present discussion is oriented toward machine architectures, it is illyminating to look
bﬁeﬂyamethodsofpuﬁﬁoningpmgmnsexpmedumplmimSQ'&pMywlégn%tywm
\amm.MMymmmmmemlzﬁMpbummemﬁcmddynamic

scheduling
requirements of programs. 'Staningwimadmﬂowgnph.pmﬁﬁmingmybcdmeinamnnberofmys
Issues of concem incinde%s
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Figure 3-2: Partitioning which Leads 10 a Static Cycle
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o Maximization of run length: Longer SQ's will Jead t longer
. conteat switches (un Jength)., w W
‘resumption, this can lead to ty. Runlcngduwhlchmlongcompmdmhe
pipeline depth have a positive effect on shortening critical path time, Short run lengths
(mmmmmwmmonmmmu)mwmm
o Minimization of explicit synchronization; Each arc which crosses SQ boundaries will re-

. quire dynamic synchronization smwmommmopummmmw«w it is

rull, htg)' Cotlnn? M.



o%@wumammmmmu
- made : or, said another way, instruction execution order canmot
be detcrmined a . It is necessary to understand where this dynamic ordering behavior

will manifest itsglf jn.the generated code. Such dynamic ordering must be viewed as a

constraint on since two instructions whose execution order is dynamically deter-
mined cannot be statically scheduled in a single $Q.

\f'} %/\'(:"' J
e Maximization of may : Given & set of execution,
wﬁdﬂnguyﬂnm.%pﬂﬂ éa“hbccém” mmm
" bhow well \s'kcepthe full." This metric is y machine and is in that
scnse less than those previously described but no less important.

Extant partitioning algorithms (6, 13, 21] can be classified as depth-first or breadth-first. Depthi-firs
algoﬁthms[G]patﬂdmbyd:ooshxapabﬁommlnpmwmomp\nofamphmdmakinghimom
sQ.removingmcconupondklglnmucﬁomﬁommcgnpbmthepmcws. The algorithm is repeated

3Coming from a von Neumsmn uniprocessor mind set where explicit synchronization is virtually unheard of

sitnations which require multitasking, it is natural © view synchronization in this way. Coming from the dataflgw world

jon is unavoidable in every instruction execution, and where there is no opportunity %o “optimize it out,” it is

reasonable 0 view explicit synchronization instroctions as overhead. In a later section, these perspectives are reconciled with
mmwmmmwmymhm—gw
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until no instructions remain unpartitioned. Such partitionings tend to be best at minimizing critical path
time and rely heavily on pipeline bypassing since, by definition, instruction n depends directly on instruc-
tion n-1. Breadth-first algorithms [13, 21] tend to aggregate instructions which have similar input depen-
dences but only weak mutual dependences, The method of dependence sets as presented in [21] is dis-

cussed in the next section. ) :

3.1.3. ThigMeigidof Dependence Sets
lnordertoguaruneelivmof mmnummﬂalmqﬂeuwm
cannot be resolved. Sucbcyclucanbe suncordynamic.’o‘f
Definition 1: AR unresslvable static cycle is a direcied Cycle of SQ's in a partitioned dataflow
graph for which no schédule of SQ executions can terminate.

Anexammeofhowpuﬁﬂmmgangiveﬂsemamﬂccydeisshownqﬂ’igm&z It can be shown
IZI]Mankwmcbmdm:WnMréﬁp’ﬂoM . partial execution of
SQ’s, is a suffi eonﬂiﬁonforpuvenﬂngmduuﬂccyduﬁunbwomingumwgvable Sarkar and
Hemwy[29]woiddnmnuolvabiﬁtymmnmlybylmposmgamvadtywmakummepuﬁﬂm-
ing - static cycles can therefore never arise.

Amuchhaqurpmblemnsthatofprcvuﬂngumuolvamcdymwcyd&s. Dynamic cycles arise due o
the Trplicit Ar€s between STORE and FETCH instructions which refer to identical elements. Such arcs are
implicit because they are generally input-dependent.

Definition 2: An unresolvable dynamic cyc a ofSQ'smapaniﬂonad
dnaﬂowmph.mﬁhﬁmdwim:nposlu fnputspe&%&wymn(m for which no schedule
ofofSQexeankaw—rminatc

Itkmwwmmmmmmmndcycmmﬂycmmmr
any possible set of program inputs. Anexmplewmmakeﬂﬁsdc:m Consider the following Id
program fragment:



VA

STORE

FETCH

5Q1: A[O] <— © 508: R1 <-- Al<i) 5Q8: R1 <—- A[1]

R <—-R1 + 1 | xe <-- Al2]
Al1] <-- R% RS <—- R1 o RR
B1 <-- Al5]

BE <-—- R1 ===

A[R] <-- R2

Figure 3-4: Partitioning which Leads to Deadlock



{ a = vector (0,2);
af0] = O;

afl] = afi] + 1;
al2] = a[]j] - 2;

io a(1] - a[2]} ;

dummxk.Pn&hganofdwanmnnwﬁautmnashmkqnnnwnvmnkwmdgnurwﬂlapnﬁdumngmmm
asﬂntﬂuwwxhlemnu}4.!hwhpuﬁﬁummp:&mhincnﬁ:wmumtnnnauxuannu;dumneQx

aﬂwumuﬂmsmﬁcdqnuknashukﬁﬂngmchﬂwﬁmﬂixlxhumk&
Thcpuwunnofummg@nmnﬂnaamnhsumﬁanawuﬂhnmﬂaﬂnmemmmbwcwxdqunonuw

~indkzsusulhlﬂu:anxhnc<xxnﬂomavﬂwn:noswdldqxnmuwcisanowedinlhe;nnhkxndcnwm
rmpm=36amowsumahunwﬁmmauzmmmnndutmswmxmtmntUrpxﬁmwhauuw»namemmﬁmn

#The descriptor for vector A is depicted as s constant 1o simplify the drawings. This is done without loss of gencrality.

%umtthkamﬂwWMMMbmmw
[-Structure-like synchronization [18). In that sense, FETCH snd STORE behave as I-FETCH and I-STORE.



Figure 3-5: Input Dependent Execution Order



version of this program. These orderings demonstrate the dynamic dependences between STOREs and
FRTCHes. If these dependences were fixed, and if it were possible to determine them at compile time, SQ
partitioning to avoid deadlock would be straightforward. Since this is not the case, the problem is one of
developing a safe partitioning strategy which is insensitive to the arrangement of dynamic arcs. One
approacdi is to m@ke each partition exactly one instraction long, i.c., the dataflow method. This, of course,
is at odds with the desire to exploit static scheduling.

Amﬂwrmemodlslogivemestosmddepaldeucex. Thefollowingdeﬁmﬁmaminom
mmms.Amm is one which is associated with a

dynamic 2 least onc of its outputs is
| nmmm%’; Wm’ z

oaall _/,wig?f;..;‘ p (lm"laxmcy) m

Definition 4: The e set T ormhsu\monmaweﬁ:mmcwdgnph[n]isme
umonofthco&;ﬁi Befs of all instructions from which it receives input. The input
dcpendem:esetofthewyv . lsdeﬁnedas{a}

Definition S: The o ,depmesamra%ﬁ,@%pfmmonlsm&
instruction’s input dependence set if the not YRTCH-like, or the union of the
msuucdmsinnﬂdependms&wiﬁashglﬁmsetwhchmiqmlymesdngvmompmlf
it is.

Note that it is a FETCH-like instruction’s ouspuz, and not the instruction itself, with which is associated
a change of dependence set. The intuition is that FRTCH-like instructions themselves can never suspend
while waiting for their output. Rather, the instructions which receive the F¥ETCH-like instruction’s output
are the ones which will suspend. Figure 3-6 makes this clecarer. A FETCH-like instruction can be viewed
as gating the value of a STORR-like operation; the dynamic arc terminates on the virtual gate. It has the
effect of suspending the "+" instruction until both the STORE and the FETCH have completed.

Applying the definitions to the graph in Figure 3-3 and using B, v, aod 3 (in that order) for unique names
mmmmmmmm«mmmmM(mmeAmm
indices {j are derived from the root with dependence set {a}): '
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Figure 3-6: Gating Effect of FRTCH-like Instructions
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massimemofmsuwdmsmSQ'shmwmaigbﬁomanSQisammmmmqtm

dependence set. Instructions are assigned to the SQ corresponding to their input dependence set in an
orderoomspondingmmeirmologicalordeﬁnginmemrdﬁonedm Since each distinct combina-
tionofdmamicamdcm&saﬁnglesq.dymmicscmmnngcmchmgewmmchmcdynmicdepm-
dences. The correctly partitioned graph is shown in Figure 3-7. The determination of synchronization
pohmisﬂmsuﬁgmfomud:eam&paﬂewe(m)wmmcmsssmbmnﬂaﬁ&mmbemﬁdﬂy
Synchmnizedbythecmmxmer.orsink,SQ. Consumers in the same SQ as the instruction producing a
value need not perform synchronization - it is implicit in the static scheduling of instructions within the
SQ.

In [21], the deadlock-avoidance property of this algorithm is proved. Moreover, if procedure calls are
mﬁwam—mm.ﬂnm@dd&mmmwymmpmw
ism. A simple extension to k-bounded loops [10] also allows inter-iteration parallelism. Run
lmgm.cxplicitsymluuﬂudon.mdmachincutiliuﬁonpmpetﬁesofdﬁsalgormmaresm(ﬁedinam
section.
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Figure 3-7: Properly Partitioned Graph




3.2, Parallel Machine Language ;
Let'srewewﬂnmﬁalmhxsionssofar Lmyandsynchmiuﬁonhavebeenshoyntobe

e et b Soito ey o g

them. Oncawhdnngeismatheexewmnumcformygwenmmmmmustbemdepananof
latency (giving rise to split transactions). Asecgndehmgcm&at%nynmmmdmhu(lwm
su cachsymhmunonevanmqmmamuquename The name space is necessarily 14ge, and
namié managément must be efficient. 'I'othxsmd.acompllctsmuldgamcodewmchcaﬂsfor
synchrmnzanonwhcnmdonlymnntxs Anamnlappmchxswexwﬂmstmmonmm
exf»rmﬂxeconccptsof implicit and synchronization. Such an instruction set, which cap- 5
mmnwmuomofbmnmdmsmcnmcxmmdm&awgesymmmmmnmemmmm
of trading off between explicit and implicit synchronization is called a parallel machine language (PML).

Itha.sbet:qst%rj:‘“t}n addmgpamuanngtoadamﬂowgnphlsuactablc Doing $0, moves dataflow

gmphsmtot ofpmllelmadnmlmgmgw 'l‘tzqnmonmmamsoﬂbowmorgmzeamadﬁm
to efficiently lmplangn a PML -dim}m mee}giuﬂy-synchmzzd dataflow

7jparadigmmdtomgmemitwnhfadhuafmcompiler sch¥fuling (e.g., Monsoon

T [241). Another approach, described below, would be to start with the implicitly-synchronized von
Neumann paradigm and to augment it with facilities for dynamic instruction scheduling.

A\
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3.3. The Hybrid Multiprocessor |
The architecture is modeled as an array of n identical processors, connected through a suitable switching

Network and
Global I-Structure Memory I
Local Local Local

Memory Memory Memory
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— Regs

— Regs — — Regs

o e

Figure 3-8: The Hybrid Machine



network to a globally addressed I-Structure memory®. Each processor is made up of a pipelined datapath,
a collection of high speed regisiers, and a local memory. Instructions are provided which allow move-
ment of data between local and global memories, and between registers and local memories. All inter-
processor communications can be thought of as going through global memory’. The local memory is both
physically and logically local to a processor. For each invocation of each code block, a frame is allocated
in the local memory of exactly one processor to hoid local variables®. References to frame slots can be

synchronizing or non-synchronizing.

3.3.1. Processor Hardware

The hardware which makes up a hybrid processor is strongly similar to that of a von Neumann machine,
but with a few important differences (Figure 3-9). The datapath (ALU, etc.) and registers are conven-
tional. The hardware datatypes are integers, floating point numbers, memory addresses, and the like. The
most significant new datatype is the confifuation which is a tupie of a program counter (PC) 2nd a frame
base register (FBR). Logical continuation states are depicted in Figure 3-10 and are encoded by the
location of the continuation. Enabled continuations ;mkz in, the Enabled Continuation Queue. The
running continuation fésides in the Active Continuation gi' ?’fu‘.;f)'endcd continuations reside in
frame slots. Uninitiated and terminated continuations are not explicitly represented.

®The behavior of an I-Structure Storage unit is discussed extensively in [18, 19] and will not be repeated here. It is sufficient
o note that all I-Structure references are split transactions and, therefore, never block the processor pipeline. Moreover, one can
view the functions of an I-Structure storage as a superset of the functions of a traditional store, i.c., &t the hardware level,
imperative reads and writes can be performed as casily as I-Structure reads end writes.

7This restriction can be fifaxed somewhat. It is possible to pass around local memory pointers if used for remote
store-in, ie., direct forwarding of values from one processor to snother. Mcnbmdmgut‘h;yv:;‘ehm
linkage. The ability to do this is a function of the lifetimes of local memory addresses.

SFrame sizes are determined st compile time.
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The PC of the running continuation denotes the instruction to be dispatched next. Instructions may
makcomrandrefcmwesmﬂwmgismsorwslotsmmclocddmwemoq. The local memory's
behaviorissimﬂarw!-Suuaumsnnageinmu&dlslmhassevmlpresmbimassodmdwﬁhia A
non-synchronizing veference to a slot behaves as a normal memory real operation. Synchronizing
mfc:eminvokesuspmsionofﬂrmmhgwnﬁmaﬁmifmesbtbeingmdismmwasm.
Symmmizmgmdsofawmmsbtbehavcjustmcsamcasmymmonizingmds.

The key hardware extension lies in the efficient state-transition management for continuations. Because
wnﬁnuaﬁommwoxd—siudobjem.ﬂwymbeasﬂyfabﬁcmdwlmmSQismvoked When the
mnﬂngwnﬁnuaﬁmmumcmauodagc(ﬁaasyMMmfmwmemptyﬁmedm),me
hardwmsimplystomsmcnmningconﬁmationinmﬂtslot.mutingitasnowcomainingacmﬁnua-
tion. An enabled continuation can then be selected from the queue. Upon satisfaction of the blockage
(meoﬂuomﬁmaﬁmwﬁmmdnﬂw.dmmpemdcmﬁmaﬁmisexmdamm A
condnuaﬁonmaybemspmdedammbaofﬁmabctweeniniﬁaﬁmandmmimﬁon. This behavior is
reminiscent of the traditional fask in a demand paged system which, upon efjpuntering a missing
memory page, becomes suspended until the page is made available.

chimmybeumdﬁulybmuahmucﬂmwhichmakemq;uﬁvemfuummﬂrmw
since no register saving takes place when a suspension occurs, register contents cannot be considered
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valid across potentially suspensive instructions, 'l‘hecostofuegistumfereme(mximmntwow
pipdimbcat)iskssmmbcalmanorymfumcc(muhnumanperpipcmbw)wﬁchls.mmm.
lwsmmagloballmmfm(spﬁtmmaaim,posﬁblywimmcxplich '
instruction). localmanoqismfemwedmlaﬁvetotthBRhthecunmcmﬁmm J-Structure
address space is global and is shared.

Omanimagimmmhcrofimplanmnﬁmofmspmsimwmmmwmmgingmmm
many tens or hundreds of instructions. Inordertokceptmimplunumﬂonfmmdimmthekitﬂsof
codcaoompilcrmigugamle.itisimpcmﬂvethxﬂnmofpcrfomingacomnmmmustbe
exceedinglylow-onmeomcrofasinglcpipebm Tomzkeﬂﬂspacﬂcalandgmuﬂ.oomnm
must be easily saved in a single cycle. Momver.itmustbemadynivialwmormYm
context states as SQ's are initiated and terminated. Lﬂly.themm\bcrofmhmmncmntbc
hounded by some small hardware resource. Ford\eumn.mcxtmmwmmmnis
repmsunedsolelybyﬂtoouﬁnnﬂmanditsassocimdfme. Bymakingthemimaﬁmmlarxet
mmaﬁmesbwvmgmdmrmgbewmumdymﬂd(amglemunaymfum)mpmdm

«chemes wherein egisiers are also saved’.



ThcsimpkmhueddzmamhmmﬁomsequnﬁaWMMMpandimmwﬂ.amwavay
positive effect on locality. Other approaches are possible, however. 'I'hehigholcvelgoalistodispatdl
inmucdomwaswbepﬂnpipelinefunofuseﬁﬁwork. Non-usdidwokacludesmﬁonof
NO-OPs (i.e.,pipdincbubbles)andinstmcﬁmswtichmspmd. Bachpmowsormaimzinsaquweof
enabled continuations. Oxnmyvkwcachcon&maﬁw:sbgicanycomﬁbudngonemaion(ﬁcone

instructions wtﬁchmigmwspend(dwmbymdudngdnpmbablmyofsuspmsioninmmycm

%ﬁmm«nbh&wmmammhwmfuumhuhmdmmy
references. MWhﬂgluhmyvmmﬁmm‘emhmﬂuﬁbMQW

problem. See Section generating
Wmummummmdmmm

suspensive FETCE Ucecuhzmeh}meﬁmdoammfnmmmnvmwwmbwﬁdlmh
otherwise have been used to mask the latency.



7

33.2. Instruction Set
ﬂtimmmﬁmscthsimpkaMmgmnmmwimwdmsingmodcsmdmmm
being largely orthogonal. Instructions are readily implemented in a single cycle. The basic addressing
modes are IMMEDIATE, REGISTER, FRAME NONSUSPENSIVE, and FRAME SUSPENSIVE. All unary and bi-
nary ops for arithmetic and logicals can take immediate, register, or frame slot operands and produce
register or frame slot results. The MOVE opcode encodes all intra-process data movement. It is capable of
moving an immediate, register, or frame slot to a register or frame slot. The MOVE-REMOTE opcode
initiates movement of a value to a remote (non-local) frame slot. This instruction is used for procedure
linkage, and is the only way one procedure can store into another’s frame. Thex.onn-nm-mx.x
Opcode and its variants initiate an indexed read from I-structure memory to the frame. STORE and its
varisnts initiate a store to I-Structure memory. The TEST and RESRT opcodes are provided for explicit
synchronization and frame slot re-use, respectively. RESRTs occur within the body of 2 multiple SQ loop
to re-enahle synchronization prior to iteration. The BRANCH and BRANCH-FALSE opcodes do the ob-
vious things, causing the PC in the continuation to be replaced (conditionally in BRANCE-FALSE). The
CONTINUR opcode causes a fork by creating and queueing a new continuation. The corresponding join
operation is implemented implicitly through frame slots. A number of other instructions unique to
TTDA-style program graphs have been implemented. The simplest are the CLOSURR ops which con-
struct and manipulate closures as word-sized objects (rather than memory-bound structures). These are
arguably easy to implement in single machine cycles. The remainder are instructions which form
manager message packets to allocate and deallocate various resources.



In translating program graphs (o0 machine language, arcs are mapped to frame slots. Slois may be
re-used within a code block but it is the responsibility of the compiler to guarantee that all reading of a
slot is complete before it is re-written. Synchronizing operand reads are used to implement inter-SQ
communication including the synchronization associated with FRTCH-like instructions. Noie that it is the
reader of the slot which chooses to synchronize or not; it is not a property of the slot itself. Each siot may

have multiple readers, some synchronizing and some nonsynchronizing.
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Thank you ...

Q&A



