CURYIN|

S SBIET Y
Lol y
SLaayly

) Sl ¢

LURTN|

"Simple Recursive"datuall 403 goll Silia)) sal) e
"Dynamic Programming"4Ssliall daa jll Gl)yl 53 o
"Backtracking"4ma all Gl)l 21 e
"Divide-and-conquer" i (38 <l)l o2 o
"Greedy"giall Gl)5 o

"Brute Force Attack" slbwall 3 gall a gna 420))) 52 o
"Randomized algorithm" 43 sdall daa)) 5211 o

k

1-Sequence

* The sequence is exemplified by sequence of
statements place one after the other - the one above or
before another gets executed first.

k

Example.1: Write an algorithm to find the area of a
circle of radius r?

Area of a circle (A) = m.r?
Input: Radius (r)of the circle.
output: Area (A) of the circle

Algorithm:

Stepl: Start
Step2: Read\input the radius r of the circle

Step3: A € PI*r*r
Step4: Print Area (A)
StepS: End

k

Example.2: Write an algorithm to read two numbers and find
their sum?

Input: First numl, Second num?2.

Output: Sum of the two numbers.

Algorithm:

Stepl: Start
Step2: Read\input the first number (num1)

Step3: Read\input the second number(num?2)
Step4: Sum numI+num?2

StepS: Print Sum

6: End

2. Branching or Selection

The branch refers to a binary decision based on some
condition. If the condition 1s true, one of the two
branches is explored; if the condition 1s false, the other
alternative 1s taken.

k

Example.4: write an algorithm to find the greater number
between two input numbers?

Input: First number A, Second number B.
Output: greater number (C).
Algorithm:

Stepl: Start
Step2: Read/input A and B
Step3: If A greater than or equal B then C=A

Step4: If B greater than or equal A then C=B

StepS: Print C
Step6: End

3-Loop or Repetition

The loop allows a statement or a sequence of
statements to be repeatedly executed based on some
loop condition. It is represented by the ‘while’ and ‘for’
constructs 1n most programming languages.

Y ou must ensure that the condition for the termination
of the looping must be satisfied after some finite
number of iterations, otherwise 1t ends up as an infinite
loop, a common mistake made by inexperienced
programmers. The loop is also known as the repetition
structure.

k

Example.6: Write an algorithm to print even numbers
between 0 and 99?

Input: First number A, Second number B.
Output: Even numbers (I).
Stepl: Start

Step2: Read/input A, and B
Step3: 1 «— 0

Step4: Print I

StepS: I «— I+2

Step6: If (I <=98) then go to Step 4
Step7: End

«

Thank You...

k

Clauall agle aud - daalall (el i 4

g all daa pll — oY1 Als
J Y Juadll
dulay) claladldll

k

The Flowchart

* (Dictionary) A schematic representation of a sequence of
operations, as in a manufacturing process or computer
program.

* (Technical) A graphical representation of the sequence of
operations in an information system or program.

° Information system flowcharts show how data flows from source
documents through the computer to final distribution to users.

* Program flowcharts show the sequence of instructions in a single
program or subroutine. Different symbols are used to draw each type of

flowchart.

Flowchart Symbols

Basic

Name Symbol Use in Flowchart

Oval Denotes the beginning or end of the program

Parallelogram/ / Denotes an input operation

Denotes a process to be carried out
e.g. addition, subtraction, division etc.

Rectangle

Denotes a decision (or branch) to be made.

Diamond .
The program should continue along one of
two routes. (e.g. IF/THEN/ELSE)

Hybrid Denotes an output operation

Denotes the direction of logic flow in the program

Flow line

Examples

EX1: Draw a flow chart to find the area of a circle of radius r?

Area = 3.14%r*r

Examples

EX2: Draw a flow chart to convert temperature Fahrenheit to Celsius?

C=5/9*(F-32)

Examples

EX3: Draw a flow chart for inputs two numbers and prints sum of
their value?

Sum =A+B

Examples

EX4: Draw a flow chart to find the greater number between two numbers?

Print B Print A

Flowcharts

* Flowcharts 1s a graph used to show a step by step
solution using symbols which represent a task.

* The symbols used consist of geometrical shapes that
are connected by flow lines.

* It 1s an alternative to pseudo coding; whereas a
pseudocode description is verbal, a flowchart is
graphical in nature.

k o

Assignment
1- Draw a flow chart for printing even numbers
between 9 and 98?

2—- Draw a flow chart for reading students
marks for 5 subjects and then calculate their

averages”?

k

Thank You...

k

Clauall agle aud - daalall (el i 4

USseall e all — (A 5Y) Al 5l
L;ati'd\ sl
Introduction to C++
Ly jd pali jus aa) s

k

Introduction to C++

When we consider a C++ program, 1t can be defined as
a collection of objects that communicate via invoking
cach other's methods. Let us now briefly look into:-

* Class

* Object
* Methods

* Instant variables

k

Introduction to C++...

* Class — A class can be defined as a
template/blueprint that describes the behaviors/states
that object of 1ts type support.

* Object — Objects have states and behaviors.
Example: A dog has states - color, name, breed as
well as behaviors - wagging, barking, eating. An
object 1s an 1nstance of a class.

k

Introduction to C++...

* Methods — A method 1s basically a behavior. A class
can contain many methods. It 1s in methods where the
logics are written, data 1s manipulated and all the
actions are executed.

* Instance Variables — Each object has its unique set
of mstance variables. An object's state 1s created by
the values assigned to these instance variables.

k

A Simple C++ Program

#include <iostream>
using namespace std;

int main ()

!

cout << "Hello World!";

return 0;

}

A Simple C++ Program

This 1s a comment line and comment block. All lines beginning with
two slash signs (//) will represent comment line. Also, all lines
beginning with slash followed by star and ended up with start
followed by slash will represent comment block (/* */). Both
comment line and comment block considered comments and do not
have any effect on the behaviour of the program. The programmer
can use them to include short explanations or observations within the
source code itself. In this case, the line 1s a brief description of what
rogram 1s.

A Simple C++ Program

#include <iostream>

* #include<iostream> tells the preprocessor to include the
iostream standard file. This specific file (iostream)
includes the declarations of the basic standard input-output
library 1n C++, and 1t 1s included because its functionality
1s going to be used later in the program.

k

A Simple C++ Program

using namespace std;

* All the elements of the standard C++ library are declared
within what 1s called a namespace, the namespace with the
name std. So 1n order to access its functionality we declare
with this expression that we will be using these entities.
This line 1s very frequent in C++ programs that use the
standard library.

k

A Simple C++ Program

int main ()

* This line corresponds to the beginning of the definition of
the main function. The main function 1s the point by where
all C++ programs start their execution, independently of its
location within the source code.

k

A Simple C++ Program

cout << "Hello World!":

* cout: represents the standard output stream in C++, and
the meaning of the entire statement 1s to insert a sequence
of characters (in this case the Hello World sequence of
characters) into the standard output stream (which usually
1s the screen)

k

A Simple C++ Program

return 0;

The return statement causes the main function to finish.
return may be followed by a return code (in our example 1s
followed by the return code 0). A return code of 0 for the
main function 1s generally interpreted as the program
worked as expected without any errors during its execution.
This 1s the most usual way to end a C++ console program.

k

The general format of a C++
program

//Introductory comment
//file name, programmer, when written or modified
/* what program does....

using namespace -

int main ()

{

constant declarations
variable declarations
executable statements

Example 1

Write a C++ program that prints on screen the
following sentences:

{****SQhatt Al-arab University College***}

{* Computer Science Department™}

{**Tirst Year**)

k

#include <iostream>
using namespace std;

int main()
{
cout << "{****Shatt Al-arab University College***}" << endl;
cout << " {* Computer Science Department *}"
<<endl;
cout << " {**First Year**}" << endl;
return 0;

}
|

Cin: is the standard input

* Cin: 1s the standard input device 1s usually the
keyboard. Handling the standard input in C++ 1s done
by applying the overloaded operator of extraction
(>>) on the cin stream. The operator must be
followed by the variable that will store the data that is
going to be extracted from the stream. For example:

int age ;

cin >> age;

k

Example 2

Write a C++ program that enter any integer value and
find 1ts double, the screen output should be like:

Please enter an integer value: 10
The value you entered is 10 and its double is 20

#include <iostream>
using namespace std;

int main ()
int 1i;
cout << "Please enter an integer value: ";
cin >> i;

cout << "The value you entered is " << 1i;
cout << " and its double is " << 1i*2;
return 0;

}

C++ Data Types

Primitive Built-in Types

* C++ offers the programmer a rich assortment of
built-in as well as user defined data types. Following
table lists down seven basic C++ data types —

k

https://www.tutorialspoint.com/cplusplus/cpp_data_types.htm

Type Keyword

Boolean bool
Character char
Integer int
Floating point float
Double floating point double
Valueless void
Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers —
2 signed
2 unsigned
2 short

2 long

Variable Declaration in C++

* A variable declaration provides assurance to the
compiler that there 1s one variable existing with the
given type and name so that compiler proceed for
further compilation without needing complete detail
about the variable. A variable declaration has its
meaning at the time of compilation only, compiler
needs actual variable definition at the time of linking
of the program.

k

Variable Declaration in C++

* A variable declaration 1s useful when you are using
multiple files and you define your variable in one of
the files which will be available at the time of linking
of the program.

* We have two types of variable (Global and Local)

k

#include <iostream>
using namespace std;

Example

int a, b;
int c;
float £f;

int main () {

int a, b;
int c;
float £f;

10;
20

a
b
Cc a + b;

cout << ¢ << endl ;

f = 70.0/3.0;
cout << f << endl ;

return 0O;

Thank You...

k

Clauall agle aud - daalall (el i 4

USseall e all — (A 5Y) Al 5l
L;ati'd\ sl
Introduction to C++
Ly jd pali jus aa) s

k

Initialization of variables

* When declaring a regular local variable, its value 1s
by default undetermined. But you may want a
variable to store a concrete value at the same moment
that 1t 1s declared. In order to do that, you can

initialize the variable. There are two ways to do this
in C++;

k

Initialization of variables

The first one, known as c-like, is done by appending an
equal sign followed by the value to which the variable
will be 1nitialized:

type identifier = initial value ;

For example, if we want to declare an int variable
called a initialized with a value of 0 at the moment in
which 1t 1s declared, we could write:

inta=0;

k

Initialization of variables

The other way to 1nitialize variables, known as
constructor initialization, is done by enclosing the
initial value between parentheses (()):

type identifier (initial value) ;
For example:
int a (0);

Both ways of initializing variables are valid and
equivalent in C++.

k

Example

// initialization of variables

#include <iostream>
using namespace std;

int main ()
{
int a=5; // initial value =5
int b(2); // initial value = 2
intresult; // initial value undetermined
a=a+3;
result = a - b;
cout << result;
return O;

}

Constants

* Literal constants:

Literal constants are literal numbers used to express
particular values within the source code of a program.

* double a=5.8; // initial value = 5.8
* 1t b(2); // in1tial value = 2
* char ch = ‘H’; // initial char value= H

* bool a=true; //1nitial a value=1

k

Constants

* Symbolic constants:

Symbolic constants can be declared in two different
ways: using the #define preprocessor directive, and
through use of the const keyword.

k

Constants

* You can define your own names for constants that
you use very often without having to resort to
memory consuming variables, simply by using the
#define preprocessor directive. Its format is:

#define identifier value

For example:
#define PI 3.14159

k

Example

EX6: Write a C++ program to calculate the weekly
pay?

WeeklyPay = workDays * workHours * payRate;

k

Example

#include <iostream>
using namespace std;
int main (void)

{

int workDays;

float workHours, payRate, weeklyPay;
workDays = 5;

workHours = 7.5;
payRate = 38.55;

weeklyPay = workDays * workHours *
payRate;

cout << "Weekly Pay = "<< weeklyPay <<
|\n|;

return O;

}

Example

* Write a C++ program to input three different types of

data and outputs 1t?

#include<iostream>
using namespace std;
int main()

{

int n; float f; char c;

cout << "input integer number: ";
cin>>n;

cout<<n<<end];

cout << "input float number: ";
cin>>f;

cout<<f<<end!;

cout << "input character: ";
cin>>c ;

cout<<c;

return O;

Operators in C++

An operator 1s a symbol that tells the compiler to
perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and
provide the following types of operators —

* Arithmetic Operators
* Relational Operators
* Logical Operators

* Assignment Operators

k

Operators in C++

An operator 1s a symbol that tells the compiler to
perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and
provide the following types of operators —

* Arithmetic Operators
* Relational Operators
* Logical Operators

* Assignment Operators

k

Arithmetic Operators

There are following arithmetic operators supported by C++ language -
Assume variable A holds 10 and variable B holds 20, then —

Operator

+

%

ok

Description
Adds two operands
Subtracts second operand from the first
Multiplies both operands
Divides numerator by de-numerator

Modulus Operator and remainder of after
an integer division

Increment operator (4", increases integer
value by one

Decrement operator (4", decreases integer
value by one

Example
A + B will give 30
A - B will give -10
A * B will give 200
B /A will give 2

B % A will give 0

A++ will give 11

A-- will give 9

#include <iostream>

Exa m p I e using namespace std;

int main() {
inta = 21;
intb =10;
int c;
c=a+b;
cout << "Line 1 -Value ofcis :" << c<<endl|;
c=a-b;
cout << "Line 2 - Value of cis " <<c<<endl;
c=a”*b;
cout << "Line 3-Value of cis :" <<c <<endl;
c=alb;
cout << "Line 4 - Value of cis :"<<c<<endl;
c=a % b;
cout << "Line 5-Value ofcis :"<<c<<endl;
C = a++;
cout << "Line 6 - Value of cis :" << c << endl|;
cC=a-—-;
cout << "Line 7 - Value of cis " <<c<<endl;
return O;

Relational Operators

* There are following relational operators supported by C++ language

* Assume variable A holds 10 and variable B holds 20, then
Operator Description Example

== Checks if the values of two operands are (A ==B)is not true.
equal or not, if yes then condition becomes
true.

I= Checks if the values of two operands are (A= B)is true.
equal or not, if values are not equal then
condition becomes true.

> Checks if the value of left operand is (A > B) is not true.
greater than the value of right operand, if
yes then condition becomes true.

< Checks if the value of left operand is less (A< B)istrue.
than the value of right operand, if yes then
condition becomes true.

>= Checks if the value of left operand is (A>=B) is not true.
greater than or equal to the value of right
operand, if yes then condition becomes
true.

<= Checks if the value of left operand is less (A <= B) s true.
than or equal to the value of right operand,
if yes then condition becomes true.

#include <iostream>
Exam ple using namespace std;
int main() {
inta = 21;
intb =10;
intc;
ifla==b){
cout << "Line 1 - ais equal to b" << endl;
} else {
cout << "Line 1 - a'is not equal to b" << endI ;
}
if(a<b){
cout << "Line 2 - ais less than b" << endl;
} else {
cout << "Line 2 - ais not less than b" << end| ;
}
if(a>b){
cout << "Line 3 - a is greater than b" << endI ;
} else {
cout << "Line 3 - a is not greater than b" << endl ;
}
/* Let's change the values of a and b */
a=9;

Thank You...

k

Clauall agle aud - daalall (el i 4

USseall e all — (A 5Y) Al 5l
L;ati'd\ sl
Introduction to C++
Ly jd pali jus aa) s

k

Logical Operators

* There are following logical operators supported by
C++ language.

* Assume variable A holds 1 and variable B holds 0,
then —

k

Logical Operators

Operator Description Example

&& Called Logical AND operator. If both the (A && B) is false.
operands are non-zero, then condition
becomes true.

Il Called Logical OR Operator. If any of the (A| B) is true.
two operands is non-zero, then condition
becomes true.

! Called Logical NOT Operator. Use to I(A && B) is true.
reverses the logical state of its operand. If
a condition is true, then Logical NOT
operator will make false.

Example

#include <iostream>
using namespace std;

int main() {
bool a = 0;
bool b = 1;

cout << "Line 1 - Condition is "<< (a ||
b)<<endl ;

cout << "Line 2 - Condition is "<< (a &&
b)<<endl ;

cout << "Line 3 - Condition is "<< l(a &&
b)<<endl ;

return O;

}

Assignment Operators

There are following assignment operators supported by
C++ language —

k

Operator

Description

Simple assignment operator, Assigns values
from right side operands to left side operand.

Add AND assignment operator, It adds right
operand to the left operand and assign the
result to left operand.

Subtract AND assignment operator, It
subtracts right operand from the left operand
and assign the result to left operand.

Multiply AND assignment operator, It
multiplies right operand with the left operand
and assign the result to left operand.

Divide AND assignment operator, It divides
left operand with the right operand and assign
the result to left operand.

Modulus AND assignment operator, It takes
modulus using two operands and assign the
result to left operand.

Example

C = A+ B will assign value of A+ B

into C

C +=Ais equivalenttoC=C +A

C-=Ais equivalenttoC=C-A

C *=Ais equivalenttoC=C *A

C/=Ais equivalenttoC=C/A

C %=Ais equivalenttoC=C % A

Example

#include <iostream>

using namespace std;

int main() {

inta = 21;

int ¢ =5;

C= a;

cout << "Line 1: (=) Operator, Value of c = : " <<c<< endl;
c += a;

cout << "Line 2: (+=)Operator, Value of ¢ =: " <<c<< endl;
C-= a;

cout << "Line 3: (-=) Operator, Value of ¢ =: " <<c<< endl;
c*= a;

cout << "Line 4: (*=) Operator, Value of c = : " <<c<< endl;
c/= a;

cout << "Line 5: (/=) Operator, Value of ¢ = : " <<c<< endl;
c = 200;

c %= a;

cout << "Line 6: (%=) Operator, Value of ¢ = : " <<c<< endl;
return O;

Operators Precedence in C++

“* Operator precedence determines the grouping of
terms 1n an expression. This affects how an
expression is evaluated.

¢ Certain operators have higher precedence than
others; for example, the multiplication operator has
higher precedence than the addition operator —

k

Operator Associativity
0,01, -, ++, - - Left to right
Multiplicative ., % Left to right

Example

#include <iostream>
using namespace std;

int main() {
inta = 20;
intb =10;
intc =15;
intd = 95;
int e;

e=(a+b)*c/d;

cout <<"Valueof (a+b)*c/dis:"<<e<<endl;
e=((@a+b)*c)/d;

cout <<"Value of (a+b)*c)/dis :"<<e<<endl;
e=(a+b)*(c/d)

cout <<"Valueof (a+b)*(c/d)is " <<e<<endl;
e=a+(b*c)/d; [/ 20+ (150/5)

cout <<"Valueofa+ (b*c)/dis :"<<e<<endl;
return O;

Homework

* Find the answer of the following:
a=100+200/10-3*10
b=100/10 * 10

c=7+(3*(20/4))-13

k

Homework

* Applying the operator precedence, and find the
following expression :

3+4%4 > 5%(4+3)-1

k

Thank You...

k

Clauall agle aud - daalall (el i 4

U seall dna oyl — 1Y) Ayl
S Jaaall
C++ lteration (Loop)

k

Introduction

* There may be a situation, when you need to execute a block
of code several number of times. In general, statements are
executed sequentially: The first statement 1n a function 1s
executed first, followed by the second, and so on.

* Programming languages provide various control structures
that allow for more complicated execution paths.

* A loop statement allows us to execute a statement or group
of statements multiple times and following 1s the general
from of a loop statement 1n most of the programming
languages

Introduction

&
,:‘
If condition
is true
If condition
is false

k

C++ lteration (Loop) Types

1 for loop Execute a sequence of statements multiple times
and abbreviates the code that manages the loop
variable.

2 while loop Repeats a statement or group of statements while

a given condition is true. It tests the condition
before executing the loop body.

3 do...while loop Like a ‘while’ statement, except that it tests the
condition at the end of the loop body.

4 Nested loop You can use one or more loop inside any another
‘while’, ‘for’ or ‘do.. while’ loop.

1- For loop- Flow Diagram

for(init; condition; increment)

{

conditional code ;

}

condition

If condition
is true

code block If condition
is false

S increment

.

Flow diagram of for loop

1- For loop-Syntax

A for loop is a repetition control structure that allows you to efficiently write a
loop that needs to execute a specific number of times.

for (1nit; condition; increment)

statement(s);

Here is the flow of control in a for loop:-

* The 1nit step 1s executed first, and only once. This step allows
you to declare and 1nitialize any loop control variables. You are
not required to put a statement here, as long as a semicolon

appears.

1- For loop-Syntax...

* Next, the condition 1s evaluated. If 1t is true, the body of the loop
1s executed. If 1t 1s false, the body of the loop does not execute
and flow of control jumps to the next statement just after the for
loop.

 After the body of the for loop executes, the flow of control jumps
back up to the increment statement. This statement can be left
blank, as long as a semicolon appears after the condition.

* The condition 1s now evaluated again. If 1t 1s true, the loop
executes and the process repeats itself (body of loop, then
increment step, and then again condition). After the condition

becomes false, the for loop terminates.

1- For loop- Example:

#include <iostream>
using namespace std;

int main () {

// for loop execution
for(inta=10;a<20;a=a+1) {
cout << "value of a: " << a << endl;

h

return O;

2- while loop- Flow Diagram

while(condition)

{

conditional code ;

}

If condition
is true

code block If condition
is false

Flow diagram of while loop

2-While loop-Syntax

A while loop statement repeatedly executes a target statement as long as
a given condition is true.

Syntax

The syntax of a while loop in C++ is -

while(condition) {
statement(s);

}

Here, statement(s) may be a single statement or a block of statements.
The condition may be any expression, and true is any non-zero value. The
loop iterates while the condition is true.

When the condition becomes false, program control passes to the line
immediately following the loop.

2-While loop-Example

#include <iostream>
using namespace std;

int main () {
/l Local variable declaration:
inta=10;

/[while loop execution

while(a < 20) {
cout << "value of a: " << a << endl;
a++;

}

return O;

}

3- do.. while loop- Flow diagram

do {
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

Flow diagram of do ... while loop

3- do.. while loop- Syntax

Unlike for and while loops, which test the loop condition at the top of the loop,
the do...while loop checks its condition at the bottom of the loop.
A do...while loop is similar to a while loop, except that a do...while loop is

guaranteed to execute at least one time.

Syntax
The syntax of a do...while loop in C++ is -

do {
statement(s);
} while(condition);

Notice that the conditional expression appears at the end of the loop, so the
statement(s) in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in
the loop execute again. This process repeats until the given condition becomes false.

3- do.. while loop-Example

#include <iostream>
using namespace std;

int main () {
// Local variable declaration:
inta=10;

/[do loop execution

do {
cout << "value of a: " << a << end|
a=a+1;

} while(a < 20);

return O;

}

4- Nested loop

* A loop can be nested inside of another loop. C++
allows at least 256 levels of nesting.

* Syntax

The syntax for a nested for loop statement in C++ 1s as
follows —

for (init; condition; increment) {
for (init; condition; increment) {
statement(s);

}

statement(s); // you can put more

_ statements.
E }

4- Nested loop...

* The syntax for a nested while loop statement in C++

1s as follows — while(condition) {
while(condition) {
statement(s);

}

statement(s); // you can put more
statements.

}

* The syntax for a nested do...while loop statement in

C++ 1s as follows — do {
statement(s); // you can put more

statements.
do {

statement(s);
- } while(condition);
} while(condition);

4- Nested loop- Example

#include <iostream>
using namespace std;

int main () {
inti, j;

for(i = 2; i<100; i++) {
for(= 2; j <= (ifj); j++)
if(1(i%j)) break; // if factor found, not prime
if(j > (i/j)) cout << i << " is prime\n";

}

return O;

}

Thank You...

k

Clauall agle aud - daalall (el i 4

A0 sgall Al — gV Al Ll
S Jaaall
C++ Decision making statements

k

C++ decision making statements

Decision making structures require that the programmer specify one or more
conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be

false.

Following is the general form of a typical decision making structure found in
most of the programming languages -

C++ Decision making statements..

If condition If condition
is true is false

conditiona
code

C++ Decision making statements..

Sr.No Statement & Description

1 if statement (4"

An ‘if’ statement consists of a boolean expression followed by one or more statements.

2 if...else statement [

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes when
the boolean expression is false.

3 switch statement ('

A ‘switch’ statement allows a variable to be tested for equality against a list of values.

4 nested if statements (7

You can use one ‘if or ‘else if’ statement inside another ‘if’ or ‘else if statement(s).

1- If statement

An if statement consists of a Boolean expression
followed by one or more statements.

Syntax

The syntax of an 1f statement in C++ 1s :-

if(boolean expression) {

// statement(s) will execute 1f the boolean expression 1s
true

h

k

1-If statement Flow Diagram

I

If condition
is true

If condition
is false

1-If statement example:-

#include <iostream>
using namespace std;

int main () {
// local variable declaration:
inta=10;

/I check the boolean condition

if(a<20){
/I if condition is true then print the following
cout << "a is less than 20;" << end|;

}

cout << "value of ais : " << a << endl;

return O;

}

2- If else statement

An if statement can be followed by an optional else statement,
which executes when the boolean expression 1s false.

Syntax

The syntax of an if...else statement in C++ 1s —

if(boolean expression) {

// statement(s) will execute 1f the boolean expression 1s true

} else { // statement(s) will execute if the boolean expression 1s false

h

2-If else statement Flow Diagram

is true

condition l
If condition

is false

else code

2-If else statement example:-

#include <iostream>
using namespace std;

int main () {
// local variable declaration:
inta =100;

/I check the boolean condition

if(a<20){
/I if condition is true then print the following
cout << "a is less than 20;" << end|;

} else {
/I if condition is false then print the following
cout << "a is not less than 20;" << end|;

}

cout << "value of ais : " << a << endl;

return O;

2-If...else if...else Statement..

An if statement can be followed by an optional else
if...else statement, which 1s very useful to test various conditions
using single if...else if statement.

When using 1f , else 1f , else statements there are few points to
keep 1n mind.

An 1f can have zero or one else's and 1t must come after any else
if's.

An 1f can have zero to many else 1f's and they must come before
the else.

Once an else if succeeds, none of he remaining else 1f's or else's
will be tested.

2-If...else If...else Statement...

Syntax
The syntax of an 1f...else 1f...else statement in C++ 1s —

if(boolean_expression 1) {
/| Executes when the boolean expression 1 is true
} else if(boolean_expression 2) {
/| Executes when the boolean expression 2 is true
} else if(boolean_expression 3) {
/| Executes when the boolean expression 3 is true
} else {
I/ executes when the none of the above condition is true.

}

2-1f...else if...else flow Diagram..

\Entry

Condition False

True 1 1

Condition False
True 2 1
Statement-1
Condition False
True 3 1
Statement-2
Condition Fzlse

True g :

Statement-3 :

|

|

h 4

Statement-n Default
Statement

2-if...else if...else example:-

#include <iostream>
using namespace std;

int main () {
/l local variable declaration:
inta =100;

/l check the boolean condition
ifla==10){
/I if condition is true then print the following
cout << "Value of a is 10" << end];
}elseif(a==20){
/I if else if condition is true
cout << "Value of a is 20" << end];
}elseif(a==30){
/I if else if condition is true
cout << "Value of a is 30" << end];
} else {
/I if none of the conditions is true
cout << "Value of a is not matching" << endl;

}

cout << "Exact value of ais : " << a << endl;

return O;

3- A switch statement

A switch statement allows a variable to be tested for equality
against a list of values. Each value 1s called a case, and the
variable being switched on 1s checked for each case.

Syntax

The syntax for a switch statement in C++ 1s as follows —

3- A switch statement ..

switch(expression) {
case constant-expression :
statement(s);
break; //optional
case constant-expression :
statement(s);
break; //optional
// you can have any number of case statements.

default : //Optional
statement(s);

3-

A switch statement ..

The following rules apply to a switch statement —

1)

2)

3)

4)

5)

6)

7)

The expression used in a switch statement must have an integral or enumerated type, or be
of a class type in which the class has a single conversion function to an integral or
enumerated type.

You can have any number of case statements within a switch. Each case is followed by the
value to be compared to and a colon.

The constant-expression for a case must be the same data type as the variable in the switch,
and it must be a constant or a literal.

When the variable being switched on is equal to a case, the statements following that case
will execute until a break statement is reached.

When a break statement is reached, the switch terminates, and the flow of control jumps to
the next line following the switch statement.

Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

A switch statement can have an optional default case, which must appear at the end of the
switch. The default case can be used for performing a task when none of the cases is true. No

1s needed in the default case.

3- A switch statement Flow Diagram

L» code block 3

3- A switch statement example:-

#include <iostream>
using namespace std;
int main () {
Il local variable declaration:
char grade ='D’;
switch(grade) {
case '‘A':
cout << "Excellent!" << endl;
break;
case '‘B':
case 'C':
cout << "Well done" << endl;
break;
case 'D':
cout << "You passed" << end]l;
break;
case 'F':
cout << "Better try again” << endl;
break;
default :
cout << "Invalid grade" << endl;
}

cout << "Your grade is " << grade << endl;
return 0;

}

4-C++ nested if statements

It 1s always legal to nest i1f-else statements, which
means you can use one 1f or else 1f statement inside
another 1f or else 1f statement(s).

Syntax

The syntax for a nested if statement 1s as follows —

k

if(boolean_expression 1) {
/| Executes when the boolean expression 1 is true
if(boolean_expression 2) {
// Executes when the boolean expression 2 is
true

}
}

4-C++ nested if flow diagram

Fig: Nested if Statement

Condition

Condition

4-C++ nested if example:-

#include <iostream>
using namespace std;
int main () {
// local variable declaration:
inta =100;
int b = 200;
/I check the boolean condition
if(a==100){
/I if condition is true then check the following
if(b ==200) {
/I if condition is true then print the following
cout << "Value of ais 100 and b is 200" << end|;

}
}

cout << "Exact value of ais : " << a << endl;
cout << "Exact value of bis : " << b << endl;
return O;

}

ASSig nment for c++ programming:-

Choose any five questions and write a c++ programming:-

1-The assignment due day is :- 11/4/2022
2-The mark for this Assignment will be 5 degree.

Thank You...

k

Clauall agle aud - daalall (el i 4

AL Ao jll — 40l Al yall
Chapter 4- C++ Function

k

1-Introduction

* A function is a group of statements that together
perform a task. Every C++ program has at least one
function, which 1s main(), and all the most trivial
programs can define additional functions.

* You can divide up your code into separate functions.
How you divide up your code among different
functions 1s up to you, but logically the division
usually 1s such that each function performs a specific
task.

k

2-Introduction ...

* A function declaration tells the compiler about a function's
name, return type, and parameters. A
function definition provides the actual body of the function.

* The C++ standard library provides numerous built-in functions
that your program can call. For example, function strcat() to
concatenate two strings, function memcpy() to copy one
memory location to another location and many more
functions.

* A function i1s known with various names like a method or a
sub-routine or a procedure etc.

The general form of a C++ function definition is as follows -

Return_type Function _name (parameter list (Parameters))

d
Function Body

h

k

2-Defining a Function

A C++ function definition consists of a function

header and a function body. Here are all the parts of a
function —

* Return Type — A function may return a value.
The return_type 1s the data type of the value the
function returns. Some functions perform the desired
operations without returning a value. In this case, the
return type 1s the keyword void.

k

2-Defining a Function...

* Function Name — This 1s the actual name of the
function. The function name and the parameter list
together constitute the function signature.

* Parameters — A parameter 1s like a placeholder.
When a function 1s invoked, you pass a value to the
parameter. This value 1s referred to as actual
parameter or argument. The parameter list refers to
the type, order, and number of the parameters of a
function. Parameters are optional; that 1s, a function
may contain no parameters.

k

2-Defining a Function...

* Function Body — The function body contains a
collection of statements that define what the function

does.

k

3-Function Declarations

A function declaration tells the compiler about a
function name and how to call the function. The actual
body of the function can be defined separately.

Function name (Parameter 1, Parameter 2, Parameter n);

k

3-Calling a Function

To call a function, you simply need to pass the required
parameters along with function name, and 1f function
returns a value, then you can store returned value. For
example :-

Function name (Parameter 1, Parameter 2, Parameter n);

k

Example

#include <iostream>

using namespace std;

/l function declaration

int max(int num1, int num2);

int main () {
/[local variable declaration:
inta =100;
int b = 200;
int ret;
/Il calling a function to get max value.
ret = max(a, b);
cout << "Max value is : " << ret << endl;
return O;

}

// function returning the max between two numbers
int max(int num1, int num2) {

// local variable declaration

int result;

if (num1 > num2)

result = num1;

else

result = num2;
return result;

Assignment

Jaid o g das) G Sl Tali g paa J) gl aladialy o
flgia Aua g H) dlasy)

SPower J) da® cawasd dl)a = s 5 C++ daly Tl i) o
¢ Pow(5,2)=25 4hada

‘Factorial sl 413 o g giny C++ 4aly gali jp SIS) o

k

Thank You...

k

