
CHAPTER ONE 

 

 
1.1 Organization and Architecture 

Computer architecture refers to those attributes of a system visible to a programmer or, put 

another way, those attributes that have a direct impact on the logical execution of a program. A 

term that is often used interchangeably with computer architecture is instruction set architecture 

(ISA) . The ISA defines instruction formats, instruction opcodes, registers, instruction and data 

memory; the effect of executed instructions on the registers and memory; and an algorithm for 

controlling instruction execution. 

Computer organization refers to the operational units and their interconnections that realize the 

architectural specifications. Examples of architectural attributes include the instruction set, the 

number of bits used to represent various data types (e.g., numbers, characters), I/O mechanisms, 

and techniques for addressing memory. 

 

1.2 Structure and Function 

A hierarchical system is a set of interrelated subsystems; each subsystem may, in turn, contain 

lower level subsystems, until we reach some lowest level of elementary subsystem. At each 

level, the system consists of a set of components and their interrelationships. At each level, the 

designer is concerned with structure and function: 

 

Structure: The way in which the components are interrelated. 

Function: The operation of each individual component as part of the structure. 

Function 

Both the structure and functioning of a computer are, in essence, simple. In general terms, 

there are only four basic functions that a computer can perform: 

1. Data processing 

2. Data storage 

3. Data movement. 

4. Control 

Structure 

We now look in a general way at the internal structure of a computer. We begin with a traditional 

computer with a single processor that employs a microprogrammed control unit, then examine a 

typical multicore structure. 

1. SIMPLE SINGLE-PROCESSOR COMPUTER 

Figure 1.1 provides a hierarchical view of the internal structure of a traditional single- 

processor computer. There are four main structural components: 

• Central processing unit (CPU): 

• Main memory: 

• System interconnection: 



However, for our purposes, the most interesting and in some ways the most complex 

component is the CPU. Its major structural components are as follows: 

 

• Control unit: 

• Arithmetic and logic unit (ALU) 

• Registers: Provides storage internal to the CPU. 

• CPU interconnection: Some mechanism that provides for communication among 

the control unit, ALU, and registers 

Finally, there are several approaches to the implementation of the control unit; one common 

approach is a microprogrammed implementation. In essence, a microprogrammed control 

unit operates by executing microinstructions that define the functionality of the control unit. 

With this approach, the structure of the control unit can be depicted, as in Figure 1.1.. 
 



2. MULTICORE COMPUTER STRUCTURE 

When these processors all reside on a single chip, the term multicore computer is used, 

and each processing unit (consisting of a control unit, ALU, registers, and perhaps cache) is 

called a core. 

• Central processing unit (CPU):. It consists of an ALU, a control unit, and registers. 

In a system with a single processing unit, it is often simply referred to as a processor. 

• Core: An individual processing unit on a processor chip. A core may be equivalent 

in functionality to a CPU on a single-CPU system. 

• Processor: A physical piece of silicon containing one or more cores. The processor 

is the computer component that interprets and executes instructions. If a processor 

contains multiple cores, it is referred to as a multicore processor. 

Figure 1.2 is a simplified view of the principal components of a typical multicore computer. 

A printed circuit board (PCB) is a rigid, flat board that holds and interconnects chips and 

other electronic components. The board is made of layers, typically two to ten, that 

interconnect components via copper pathways that are etched into the board. The main 

printed circuit board in a computer is called a system board or motherboard, while smaller 

ones that plug into the slots in the main board are called expansion boards. 
 
 

 



The most prominent elements on the motherboard are the chips. A chip is a single piece of 

semiconducting material, typically silicon, upon which electronic circuits and logic gates 

are fabricated. The resulting product is referred to as an integrated circuit . 

 

1.3 The Evolution of the Intel x86 Architecture 

The current x86 offerings represent the results of decades of design effort on complex 

instruction set computers (CISCs). The x86 incorporates the sophisticated design principles 

once found only on mainframes and supercomputers and serves as an excellent example of 

CISC design. An alternative approach to processor design is the reduced instruction set 

computer (RISC) . The ARM architecture is used in a wide variety of embedded systems 

and is one of the most powerful and best-designed RISC based systems on the market. Table 

1.1 shows that evolution 
 

 



8080: This was an 8-bit machine, with an 8-bit data path to memory. 8080 was used in the 

first personal computer, the Altair. 

8086: is the first appearance of the x86 architecture., 16-bit machine. In addition to a wider 

data path and larger registers. A variant of this processor, the 8088, was used in IBM’s first 

personal computer, securing the success of Intel. 

80386: Intel’s first 32-bit machine, and a major overhaul of the product. With a 32-bit 

architecture. This was the first Intel processor to support multitasking, meaning it could run 

multiple programs at the same time. 

80486: The 80486 introduced the use of much more sophisticated and powerful cache 

technology and sophisticated instruction pipelining. The 80486 also offered a built-in math 

coprocessor. 

Pentium: With the Pentium, Intel introduced the use of superscalar techniques, which allow 

multiple instructions to execute in parallel. 

Pentium Pro: The Pentium Pro continued the move into superscalar organization begun with 

the Pentium, with aggressive use of register renaming, branch prediction, data flow analysis, 

and speculative execution. 

Pentium II: The Pentium II incorporated Intel MMX technology, which is designed 

specifically to process video, audio, and graphics data efficiently. 

Pentium III: The Pentium III incorporates additional floating-point instructions: The 

Streaming SIMD Extensions (SSE) instruction set extension added 70 new instructions 

designed to increase performance. 

Pentium 4: The Pentium 4 includes additional floating-point and other enhancements 

formultimedia. 

Core: This is the first Intel x86 microprocessor with a dual core, referring to the 

implementation of two cores on a single chip. 

Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad provides four 

cores on a single chip. More recent Core offerings have up to 10 cores per chip. 

 

1.4 Embedded Systems 

The term embedded system refers to the use of electronics and software within a product, 

computing systems. 

Types of devices with embedded systems are almost too numerous to list. Examples include 

cell phones, digital cameras, video cameras, calculators, microwave ovens, home security 

systems, washing machines, lighting systems, thermostats, printers, various automotive 

systems (e.g., transmission control, cruise control, fuel injection, anti-lock brakes, and 

suspension systems), tennis rackets, toothbrushes, and numerous types of sensors and 

actuators in automated systems. 

 

Often, embedded systems are tightly coupled to their environment. This can give rise to real-

time constraints imposed by the need to interact with the environment. Constraints, such as 

required speeds of motion, required precision of measurement, and required time durations, 

dictate the timing of software operations. If multiple activities must be managed 

simultaneously, this imposes more complex real-time constraints. 



The following figure shows in general terms an embedded system organization. In addition 

to the processor and memory, there are a number of elements that differ from the typical 

desktop or laptop computer 
 

Microprocessors versus Microcontrollers 

microprocessor chips included registers, an ALU, and some sort of control unit or instruction 

processing logic. Contemporary microprocessor chips, as shown in Figure 1.2, include 

multiple cores and a substantial amount of cache memory. 

 

A microcontroller is a single chip that contains the processor, non-volatile memory for the 

program (ROM), volatile memory for input and output (RAM), a clock, and an I/O control 

unit. The processor portion of the microcontroller has a much lower silicon area than other 

microprocessors and much higher energy efficiency. See figure 1.3 
 



1.5 ARM Architecture 

The ARM architecture refers to a processor architecture that has evolved from RISC design principles and is used 

in embedded systems. ARM is probably the most widely used embedded processor architecture and indeed the 

most widely used processor architecture of any kind in the world 

 

 
ARM chips are 

• high-speed processors that are known for their small die size 

• and low power requirements. 

• They are widely used in smartphones and other handheld devices 

• ARM chips are the processors in Apple’s popular iPod and iPhone devices, and are used in virtually 

all Android smartphones as well 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Two  

The Computer System 
 

 

 

 

2.1 Computer Components 

In the original case of customized hardware, the system accepts data and produces results (Figure 

2.1a), the system accepts data and control signals and produces results. Thus, instead of rewiring 

the hardware for each new program 

The entire program is actually a sequence of steps. At each step, some arithmetic or logical 

operation is performed on some data. For each step, a new set of control signals is needed. Let us 

provide a unique code for each possible set of control signals, and let us add to the general- purpose 

hardware a segment that can accept a code and generate control signals (Figure 2.1b). 

 

 

 

Figure 2.2 illustrates these top-level components and suggests the interactions among them. 

The CPU exchanges data with memory. For this purpose, it typically makes use of 

• two internal (to the CPU) registers: 

1- a memory address register (MAR) , which specifies the address in memory for the 

next read or write, 

2- and a memory buffer register (MBR) , which contains the data to be written into 

memory or receives the data read from memory. 

• Similarly, an I/O 

1- address register (I/O AR) specifies a particular I/O device. 



2- An I/O buffer register (I/O BR) is used for the exchange of data between an I/O 

module and the CPU. 

 

 

 

2.2 Computer Function 

The processing required for a single instruction is called an instruction cycle . Using the simplified 

two-step description given previously, the instruction cycle is depicted in Figure 2.3. The two steps 

are referred to as 

• the fetch cycle and 

• the execute cycle . 
 

Instruction Fetch and Execute: At the beginning of each instruction cycle, the processor 

fetches an instruction from memory. 

1- a register called the program counter (PC) holds the address of the instruction to be 

fetched next 

2- the processor always increments the PC after each instruction fetch so that it will 

fetch the next instruction 



3- The fetched instruction is loaded into a register in the processor known as the 

instruction register (IR). 

4- . The processor interprets the instruction and performs the required action. In 

general, these actions fall into four categories. 

 

Consider a simple example using a hypothetical machine that includes the characteristics 

listed in Figure 2.4. For And the organize memory using 16-bit words. 

• The instruction format provides 4 bits for the opcode,, so 24=16 different opcodes 

• and up to 212=4096 (4K) words of memory can be directly addressed 

 

 

A single instruction cycle with the following steps occurs: 

1- Fetch the ADD instruction. 

2- Read the contents of memory location A into the processor. 

3- Read the contents of memory location B into the processor. 

4- Add the two values. 

5- Write the result from the processor to memory location A 

In Figure 2.5 For any given instruction cycle, some states may be null and others may be visited 

more than once. The states can be described as follows: 

• Instruction address calculation (iac): 

• Instruction fetch (if): 

• Instruction operation decoding (iod): 

• Operand address calculation (oac):. 

• Operand fetch (of):. 

• Data operation (do): 

• Operand store (os): 



 

 

 

Interrupts 

Virtually all computers provide a mechanism by which other modules (I/O, memory) may 

interrupt the normal processing of the processor. Table 2.1 lists the most common classes of 

 

 

Let us try to clarify what is happening in Figure 2.6 ,We have a user program that contains two 

WRITE commands. There is a segment of code at the beginning, then one WRITE command, then 

a second segment of code, then a second WRITE command, then a third and final segment of code. 

The WRITE command invokes the I/O program provided by the OS. Similarly, the I/O program 

consists of a segment of code, followed by an I/O command, followed by another segment of code. 

The I/O command invokes a hardware I/O operation. 



 

 

When the interrupt processing is completed, execution resumes (Figure 2.7). To accommodate 

interrupts, an interrupt cycle is added to the instruction cycle, as shown in Figure 2.8: 

 

 

 



MULTIPLE INTERRUPTS. Two approaches can be taken to dealing with multiple interrupts: 

• The first is to disable interrupts while an interrupt is being processed. This approach is 

nice and simple, as interrupts are handled in strict sequential order (Figure 2.9a) 

• A second approach is to define priorities for interrupts and to allow an interrupt of higher 

priority to cause a lower-priority interrupt handler to itself be interrupted (Figure 3.9b). 
 

 

 

 

 

 

 

Example: of this second approach, consider a system with three I/O devices: a printer, a disk, and 

a communications line, with increasing priorities of 2, 4, and 5, respectively. Figure 3.10 illustrates 

a possible sequence 



 

 

 

2.3 Interconnection Structures 

A computer consists of a set of components or modules of three basic types (processor, memory, 

I/O) that communicate with each other. Thus, there must be paths for connecting the modules. The 

collection of paths connecting the various modules is called the interconnection structure. Figure 

2.11 suggests the types of exchanges that are needed by indicating the major forms of input and 

output for each module type 
 



The interconnection structure must support the following types of transfers: 

• Memory to processor: 

• Processor to memory: 

• I/O to processor: 

• Processor to I/O: 

• I/O to or from memory: 

Over the years, a number of interconnection structures have been tried. By far the most common 

are : 

(1) the bus and various multiple-bus structures, 

(2) point-to-point interconnection structures with packetized data transfer. 

 

3.3.1 Bus Interconnection 

Computer systems contain a number of different buses that provide pathways between 

components at various levels of the computer system hierarchy. A bus that connects major 

computer components (processor, memory, I/O) is called a system bus . 

Although there are many different bus designs, on any bus the lines can be classified into three 

functional groups (Figure 2.12): data, address, and control lines. 

 

 

The data lines =data bus . The data bus may consist of 32, 64, 128, or even more separate lines, the 

number of lines being referred to as the width of the data bus. 

The address lines = data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits) 

of data from memory, it puts the address of the desired word on the address lines. Clearly, the width 

of the address bus determines the maximum possible memory capacity of the system. 

The control bus are used to control the access to and the use of the data and address lines. Typical 

control lines include: 

• Memory write. 

• Memory read 

• I/O write. 

• I/O read. 

• Transfer ACK 

• Bus request 

• Bus grant 



• Interrupt request 

• Interrupt ACK 

• Clock 

• Reset 

2.3.1 Point-to-Point Interconnect 

contemporary systems increasingly rely on point-to-point interconnection rather than shared 

buses. The principal reason driving the change from bus to point-to-point interconnect was: 

1-  the electrical constraints encountered with increasing the frequency of wide synchronous 

buses. 

2- with multiple processors and significant memory on a single chip, it was found that the use 

of a conventional shared bus on the same chip magnified the difficulties of increasing bus 

data rate and reducing bus latency to keep up with the processors. 

example of the point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which 

was introduced in 2008. The following are significant characteristics of QPI: 

• Multiple direct connections 

• Layered protocol architecture. 

• Packetized data transfer 

Figure 2.13 illustrates a typical use of QPI on a multicore computer. If core A in Figure 2.13 

needs to access the memory controller in core D then 

1- it sends its request through either cores B or C, 

2- which must in turn forward that request on to the memory controller in core D. 
 



I/O hub (IOH) acts as a switch directing traffic to and from I/O devices. 

QPI is defined as a four-layer protocol architecture, encompassing the following layers (Figure 3.14) 

 

• Physical:. The unit of transfer at the Physical layer is 20 bits, which is called a Phit (physical 

unit). 

• Link: Responsible for reliable transmission and flow control. The Link layer’s unit of transfer is 

an 80-bit Flit (flow control unit). 

• Routing: Provides the framework for directing packets through the fabric. 

• Protocol: The high-level set of rules for exchanging packets of data between devices. 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



Chapter 3  

 The Memory Hierarchy 

 

 

3.1 Principle Of Locality 

locality of reference: The principle reflects the observation that during the course of execution of a 

program, memory references by the processor, for both instructions and data, tend to cluster. Over 

a long period of time, the clusters in use change, but over a short period of time, the processor is 

primarily working with fixed clusters of memory references. 

 

 

A distinction is made in the literature between two forms of locality: 

1. Temporal locality: Refers to the tendency of a program to reference in the near future 

those units of memory referenced in the recent past. For example: when an iteration 

loop is executed, the processor executes the same set of instructions repeatedly. 

2. Spatial locality: Refers to the tendency of a program to reference units of memory 

whose addresses are near one another. That is, if a unit of memory x is referenced at 

time t, it is likely that units in the range through will be referenced in the near future 

EXAMPLE: For cache memory: 

• temporal locality is traditionally exploited by keeping recently used instruction and 

data values in cache memory and by exploiting a cache hierarchy. 

• Spatial locality is generally exploited by using larger cache blocks and by 

incorporating prefetching mechanisms (fetching items of anticipated use) into the 

cache control logic. 

Typically, each instruction execution involves fetching the instruction from memory and, during 

execution, accessing one or more data operands from one or more regions of memory. Thus, there 

is a spatial dual locality : 

✓ data spatial locality 

✓ and instruction spatial locality. 

And, of course, temporal locality exhibits this same temporal dual behavior: 

✓ data temporal locality 

✓ and instruction temporal locality. 

Figure(3.1),show that, when an instruction is fetched from a unit of memory, it is likely that in the 

near future, additional instructions will be fetched from that same memory unit; 



and when a data location is accessed, it is likely that in the near future, additional instructions will 

be fetched from that same memory unit 
 

 

 

3.2 Characteristics Of Memory Systems 

The complex subject of computer memory is made more manageable if we classify memory 

systems according to their key characteristics. The most important of these are : Location 

• Internal: internal memory (e.g., processor registers, cache, main memory) 

• External: External memory consists of peripheral storage devices, such as disk and 

tape, that are accessible to the processor via I/O controllers 

Capacity 

• Number of words : Common word lengths are 8, 16, and 32 bits. 

• Number of bytes : External memory capacity is typically expressed in terms of bytes 

Unit of Transfer(Word ,Block): For internal memory, the unit of transfer is equal to the number of 

electrical lines into and out of the memory module. This may be equal to the word length, (1byte = 

8bits)but is often larger, such as 64, 128, or 256 bits. 

• Word: For example, the CRAY C90 has a 64-bit word length .The Intel x86 

architecture has a wide variety of instruction lengths, expressed as multiples of bytes, 

and a word size of 32 bits. 

• Addressable units: many systems allow addressing at the byte level. In any case, the 

relationship between the length in bits A of an address and the number N of 

addressable units is :  2A=N 

Access Method 

• Sequential : Memory is organized into units of data, called records. Access must be 

made in a specific linear sequence. (shared read–write mechanism) 



• Direct : Access is accomplished by direct access to reach a general vicinity plus 

sequential searching, counting, or waiting to reach the final location(shared read– 

write mechanism) 

• Random : Any location can be selected at random and directly addressed and accessed. 

• Associative : This is a random access type of memory that enables one to make a 

comparison of desired bit locations within a word for a specified match, and to do this 

for all words simultaneously 

 

Performance 

• Access time : : For random-access memory, this is the time it takes to perform a read 

or write operation. For non-random-access memory, access time is the time it takes to 

position the read–write mechanism at the desired location. 

• Memory cycle time: This concept is primarily applied to random-access memory and 

consists of the access time plus any additional time required before a second access 

can commence 

• Transfer rate : This is the rate at which data can be transferred into or out of a memory 

unit , it is equal to 1/(cycle time) 

Physical Type (Semiconductor , Magnetic ,Optical ,Magneto-optical) 

 

Physical Characteristics  (Volatile/nonvolatile , Erasable/nonerasable ,Organization 

,Memory module) 

 

 

3.3 The Memory Hierarchy 

A variety of technologies are used to implement memory systems, and across this spectrum 

of technologies, the following relationships hold: 

• Faster access time, greater cost per bit 

• Greater capacity, smaller cost per bit 

• Greater capacity, slower access time 

The way out of this dilemma is not to rely on a single memory component or technology, but to 

employ a memory hierarchy. A typical hierarchy is illustrated in Figure 3.2. As one goes down the 

hierarchy, the following occur: 

a. Decreasing cost per bit 

b. Increasing capacity 



c. Increasing access time 

d. Decreasing frequency of access of the memory by the processor 

 

Let us label the memory at level i of the memory hierarchy such that is Mi closer to the 

processor than Mi+1 If Ci , Ti and Ri and Si are respectively the cost per byte, average access 

time, average data transfer rate, and total memory size at level i, then the following 

relationships typically hold between level I and i+1: 

 

 

 



 

 

In practice, the dynamic movement of chunks of data between levels during program , shown 

in Figure 3.3, with an indication of the size of the chunks of data exchanged between levels. 
 

 

 

3.3.1 Typical Members of the Memory Hierarchy 

Table 3.1 lists some characteristics of key elements of the memory hierarchy: 

• The fastest, smallest, and most expensive type of memory consists of the 

registers internal to the processor. 

• Next will be typically multiple layers of cache. Level 1 cache (L1 cache), closest 

to the processor registers, is almost always divided into an instruction cache and 



a data cache. This split is also common for L2 caches. L3 cache and some have an L4 

cache. 

• Main memory is the principal internal memory system of the computer. Each 

location in main memory has a unique address. Main memory is visible to the 

programmer, whereas cache memory is not. 

• External, nonvolatile memory is also referred to as secondary memory or auxiliary 

memory. These are used to store program and data files and are usually visible to 

the programmer only in terms of files and records, as opposed to 

• Table 3.1 
 

 

 

 

3.3.2 The IBM z13 Memory Hierarchy 

Figure 3.4 illustrates the memory hierarchy for the IBM z13 mainframe computer ,It consists of 

the following levels: 



 

 

 

3.3.3 Design Principles for a Memory Hierarchy 

Three principles guide the design of a memory hierarchy : 
 

This leads to two requirements: 

Vertical coherence: If one core makes a change to a cache block of data at L2, that update must be 

returned to L3 before another L2 retrieves that block. 

Horizontal coherence: If two L2 caches that share the same L3 cache have copies of the same block 

of data, then if the block in one L2 cache is updated, the other L2 cache must be alerted that its copy 

is obsolete. 

 

 

 
 

 



Chapter 4  

 Cache Memory 

 
1.1 Cache Memory 

Principles Cache memory is designed to combine the memory access time of expensive, high- speed 

memory combined with the large memory size of less expensive, lower-speed memory. The 

concept is illustrated in Figure 4.1a. 

The cache contains a copy of portions of the main memory. When the processor attempts to read a 

word of memory, a check is made to determine if the word is in the cache. If so, the word is 

delivered to the processor. If not, a block of main memory, consisting of some fixed number of 

words, is read into the cache and then the word is delivered to the processor. 

Figure 4.1b depicts the use of multiple levels of cache. The L2 cache is slower and typically larger 

than the L1 cache, and the L3 cache is slower and typically larger than the L2 cache. 
 

 

 

 

Figure 4.2 depicts the structure of a cache/main-memory system. Several terms are introduced: 



 

 

• Block: The minimum unit of transfer between cache and main memory 

• Frame: To distinguish between the data transferred and the chunk of physical memory, the 
term frame, or block frame, is sometimes used with reference to caches. 

• Line: A portion of cache memory capable of holding one block, so-called because it is usually 
drawn as a horizontal object. 

• Tag: A portion of a cache line that is used for addressing purposes, as explained subsequently 

Main memory consists of up to 2n addressable words, with each word having a unique n-bit 

address.This memory is considered to consist of a number of fixed-length blocks of K words each. 

That is, there are blocks in main memory. That is, there are M=2n/k blocks in main memory.The 

cache consists of M lines. Each line contains K words, plus a tag. 

The term line size refers to the number of data bytes, or block size, contained in a line. 

 

Figure 4.3 illustrates the read operation. The processor generates the read address (RA) of a word 

to be read. If the word is contained in the cache (cache hit), it is delivered to the processor. 

If a cache miss occurs, two things must be accomplished: 

• the block containing the word must be loaded in to the cache, 

• and the word must be delivered to the processor. 

 

 

Note: One possible technique that is used to increase the bandwidth is memory interleaving. To 
achieve best results, we can assume that the block brought from the main memory to the cache, 

upon a cache miss. 



 

 

The organization shown in Figure 4.4, which is typical of contemporary cache organizations. In 

this organization: 

• the cache connects to the processor via data, control, and address lines. 

•  The data and address lines also attach to data and address buffers, which attach to a 
system bus from which main memory is reached. 

• When a cache hit occurs, the data and address buffers are disabled and communication is 

only between processor and cache, with no system bus traffic. 

• When a cache miss occurs, the desired address is loaded onto the system bus and the data 

are returned through the data buffer to both the cache and the processor 
 



4.2 Elements of Cache Design 

Although there are a large number of cache implementations, there are a few basic design elements 

that serve to classify and differentiate cache architectures. 

 

 

Cache Addresses 

• For reads to and writes from main memory, a hardware memory management unit (MMU) 
translates each virtual address into a physical address in main memory. 

•  When virtual addresses are used, the system designer may choose to place the cache 

between the processor and the MMU or between the MMU and main memory (Figure 4.5). 

•  A logical cache : also known as a virtual cache, stores data using virtual addresses. The 
processor accesses the cache directly, without going through the MMU. 

• A physical cache :stores data using main memory physical addresses 

 

 

 

Cache Size 

We would like the size of the cache to be small enough so that the overall average cost per bit is 

close to that of main memory alone and large enough so that the overall average access time is 

close to that of the cache alone. There are several other motivations for minimizing cache size. The 

larger the cache, the larger the number of gates involved in addressing the cache. Table 4.1 lists the 

cache sizes of some current and past processors. 



 

 

Logical Cache Organization(Mapping Function) 

Because there are fewer cache lines than main memory blocks, an algorithm is needed for 

mapping main memory blocks into cache lines. Further, a means is needed for determining which 

main memory block currently occupies a cache line . The choice of the mapping function dictates 

how the cache is logically organized. Three techniques can be used: direct, associative, and set- 

associative. 
 

 

1- Direct Mapping: 

The simplest technique, known as direct mapping, maps each block of main memory into only 

one possible cache line. The mapping is expressed as: i = j modulo m 

i = cache line number 

j = main memory block number 
m = number of lines in the cache 



 
 

 

 

1. Word field = log2 B, where B is the size of the block in words. 

2. Block field = log2 N, where N is the size of the cache in blocks. 

3. Tag field = log2 (M/N), where M is the size of the main memory in blocks. 

4. The number of bits in the main memory address = log2 (B x M) 

 

Example : Consider, for example, the case of a main memory consisting of 4K blocks, a cache 

memory consisting of 128 blocks, and a block size of 16 words. The following table shows the 

division of the main memory and the cache according to the direct-mapped cache technique. As the 

figure shows, there are a total of 32 main memory blocks that map to a given cache block. For 

example, main memory blocks 0, 128, 256, 384, ... , 3968 map to cache block 0. 

Table 4.2 Mapping main memory blocks to cache blocks 
 



1. Word field =log2 B = log2 16 = log2 24 = 4 bits 

2. Block field = log2 N = log2 128 = log2 27 = 7 

3. bits Tag field = log2 (M/N) = log2 (22 X210/27 ) = 5 bits 

4. The number of bits in the main memory address = log2 (B X M) = log2 (24 X 212) = 16 

bits. 

 

 

 
Example: Word field B= 64 word 

Block field = 256 block 

Main memory= 8 M block 

 

Answer: Word field B= log264 = log22
6 = 6 

Block filed= log2256 = log22
8 =8 

bits Tag field = log2 (M/N) = log2 (2
3 x 220/28 ) = log2(2

23/28 )=15 bits 

bits in the main memory address = log2 (B X M) = log2 (2
6 x 223) =29 

 

15 bit 8 bit 6 bit 

 

 

 

 

 

 

 

 

 

The following Figure 4.7 illustrates the general mechanism.: 



 
 

 



2- Fully ASSOCIATIVE MAPPING 

Associative mapping overcomes the disadvantage of direct mapping by permitting each main 

memory block to be loaded into any line of the cache(Figure 4.6b) .The Tag field uniquely 

identifies a block of main memory. To determine whether a block is in the cache, the cache control 

logic must simultaneously examine every line’s tag for a match. Figure 4.9 illustrates the logic 
 

 

Example : Compute the above three parameters for a memory system having the following 

specification: size of the main memory is 4K blocks, size of the cache is 128 blocks, and the block 

size is 16 words. Assume that the system uses associative mapping. 

1. Word field =log2 B =log2 16 =log2 24 = 4 bits 

2. Tag field =log2 M =log2 22 x 210 = 12 bits 

3. The number of bits in the main memory address =log2 (B x M) =log2 (24 x212) = 16 bits. 
 

 

 

Example: Word field B= 64 ,Main memory= 8 M 

Answer: Word field B= log264 = log22
6 = 6 

bits Tag field = log2 (M) = log2(2
23)=23 bits 

bits in the main memory address = log2 (B X M) = log2 (2
6 x 223) =29 

 

6 bit 23 bit 



Example 

Figure 4.11 shows our example using associative mapping. A main memory address consists of a 

22-bit tag and a 2-bit byte number. The 22-bit tag must be stored with the 32-bit block of data for 

each line in the cache. 
 

 

 

 

NOTE: CONTENT-ADDRESSABLE MEMORY(CAM): A CAM is designed such that when a 

bit string is supplied, the CAM searches its entire memory in parallel for a match. If the content is 

found, the CAM returns the address where the match is found and, in some architectures, also 

returns the associated data word. This process takes only one clock cycle. Figure 4.12 is a simplified 

illustration of the search function of a small CAM with four horizontal words, each word containing 

five bits, or cells. CAM cells contain both storage and comparison circuitry 



 

 

3- SET-ASSOCIATIVE MAPPING 

Set-associative mapping is a compromise that exhibits the strengths of both the direct and 

associative approaches while reducing their disadvantages. In this case, the cache consists of 

number sets, each of which consists of a number of lines. The relationships are: 

m = v × k 

i = j modulo v 
i = cache set number 

j = main memory block number 

m = number of lines in the cache 

v = number of sets 

k = number of lines in each se 

 

Figure 4.13a illustrates this mapping for the first v blocks of main memory. As with associative 

mapping, 

• each word maps into multiple cache lines. 

• For set-associative mapping, each word maps into all the cache lines in a specific set, so 

that main memory block maps into set 0, and so on. 

• Thus, the set-associative cache can be physically implemented as v associative caches, 

typically implemented as v CAM memories. 

It is also possible to implement the set-associative cache as k direct mapping caches, as shown in 

Figure 4.13b. 

• Each direct-mapped cache is referred to as a way, consisting of v lines. 

• The first v lines of main memory are direct mapped into the v lines of each way; the next 

group of v lines of main memory are similarly mapped, and so on. 



 

 

 

For set-associative mapping, the cache control logic interprets a memory address as three fields: 

Tag, Set, and Word. The d set bits specify one of sets. The s bits of the Tag and Set fields specify 

one of the blocks of main memory. Figure 4.14 illustrates the cache control logic. 

Example :Figure 4.15 shows our example using two-way set-associative mapping with two lines 

in each set. The 13-bit set number identifies a unique set of two lines within the cache. It also gives 

the number of the block in main memory, modulo 213 . Any of those blocks can be loaded into 

either of the two lines in the set. Note that no two blocks that map into the same cache set have the 

same tag number. For a read operation, the 13-bit set number is used to determine which set of two 

lines is to be examined. Both lines in the set are examined for a match with the tag number of the 

address to be accessed 



 
 

 

 



Example 4 Compute the above three parameters (Word, Set, and Tag) for a memory 
system having the following specification: size of the main memory is 4K blocks, size 
of the cache is 128 blocks, and the block size is 16 words. Assume that the system 
uses set-associative mapping with four blocks per set. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 



PART5: Internal Memory 
 

 
5.1 Semiconductor Main Memory 

In earlier computers, the most common form of random access storage for computer main memory 

employed an array of doughnut-shaped ferromagnetic loops referred to as cores. Hence, main 

memory was often referred to as core, a term that persists to this day.Today, the use of 

semiconductor chips for main memory is almost universal. Key aspects of this technology are 

explored in this section. 

Organization 

The basic element of a semiconductor memory is the memory cell. Although a variety of electronic 

technologies are used, all semiconductor memory cells share certain properties: 

• They exhibit two stable (or semistable) states, which can be used to represent binary 

1 and 0. 

• They are capable of being written into (at least once), to set the state. 

• They are capable of being read to sense the state. 
Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell has three functional 

terminals capable of carrying an electrical signal. The select terminal, as the name suggests, selects 

a memory cell for a read or write operation. The control terminal indicates read or write. For 

writing, the other terminal provides an electrical signal that sets the state of the cell to 1 or 0. For 

reading, that terminal is used for output of the cell’s 

state. 

 

 

5.1.1 DRAM and SRAM 

All of the memory types that we will explore in this chapter are random access. That is, individual 

words of memory are directly accessed through wired-in addressing logic. 

DYNAMIC RAM :  A dynamic RAM (DRAM) is made with cells that store data as charge on 

capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. 

Because capacitors have a natural tendency to discharge, dynamic RAMs require periodic charge 

refreshing to maintain data storage. The term dynamic refers to this tendency of the stored charge 

to leak away, even with power continuously applied.See figure 5.2a 



• For the write operation, a voltage signal is applied to the bit line; a high voltage 

represents 1, and a low voltage represents 0. A signal is then applied to the address 

line, allowing a charge to be transferred to the capacitor. 

• For the read operation, when the address line is selected, the transistor turns on and 

the charge stored on the capacitor is fed out onto a bit line and to a sense amplifier. 

The sense amplifier compares the capacitor voltage to a reference value and 

determines if the cell contains a logic 1 or a logic 0. The readout from the cell 

discharges the capacitor, which must be restored to complete the operation. 

STATIC RAM In contrast, a static RAM (SRAM) is a digital device that uses the same logic 

elements used in the processor. In a SRAM, binary values are stored using traditional flip-flop 

logic-gate configurations (see Chapter 12 for a description of flip-flops). A static RAM will hold 

its data as long as power is supplied to it. 

Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors (T1 , T2 , T3 , T4) 

are cross connected in an arrangement that produces a stable logic state. 

• In logic state 1, point C1 is high and point C2 is low; in this state,T1 and T4 are off 

and T2 and T3 are on. 

• In logic state 0, C1 point is low and C2 point is high; in this state, T1 and T4 are on 

and T2 and T3 are off. Both states are stable as long as the direct current (dc) voltage 

is applied. Unlike the DRAM, no refresh is needed to retain data 
 

 

 

5.1.2 Types of ROM 

A read-only memory (ROM) contains a permanent pattern of data that cannot be changed. A ROM 

is nonvolatile; that is, no power source is required to maintain the bit values in memory. While it 

is possible to read a ROM, it is not possible to write new data into it. A ROM is created like any 

other integrated circuit chip,and can classify to: 

PROM: When only a small number of ROMs with a particular memory content is needed, a less 

expensive alternative is the programmable ROM (PROM) . PROM is nonvolatile and may be 

written into only once. For the PROM, the writing process is performed electrically and may be 

performed by a supplier or customer at a time later than the original chip fabrication. PROMs 

provide flexibility and convenience. 



EPROM :The optically erasable programmable read-only memory (EPROM) is read and written 

electrically, as with PROM. However, before a write operation, all the storage cells must be erased 

to the same initial state by exposure of the packaged chip to ultraviolet radiation. Erasure is 

performed by shining an intense ultraviolet light through a window that is designed into the memory 

chip. For comparable amounts of storage, the EPROM is more expensive than PROM, but it has 

the advantage of the multiple update capability. 

 

EEPROM :A more attractive form of read-mostly memory is electrically erasable programmable 

read-only memory (EEPROM). This is a read-mostly memory that can be written into at any time 

without erasing prior contents; only the byte or bytes addressed are updated. EEPROM is more 

expensive than EPROM and also is less dense, supporting fewer bits per chip. 

 

5.1.3 Chip Logic 

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits are read or written 

at a time. Logically: 

• the memory array is organized as four square arrays of 2048 by 2048 elements. 

• Address lines :A total of log2W lines are needed. In our example, 
1. 11 address lines are needed to select one of 2048 rows. These 11 lines are fed 

into a row decoder, which has 11 lines of input and 2048 lines for output. The 

logic of the decoder activates a single one of the 2048 outputs depending on 

the bit pattern on the 11 input lines(211=2048) . 

2. An additional 11 address lines select one of 2048 columns 

• Four data lines are used for the input and output of 4 bits to and from a data buffer. 
1. On input (write), the bit driver of each bit line is activated for a 1 or 0 according 

to the value of the corresponding data line. 

2. On output (read), the value of each bit line is passed through a sense amplifier 

and presented to the data lines. The row line selects which row of cells is used 

for reading or writing 

• only 11 address lines (A0–A10), half the number you would expect for a array. This 

is done to save on the number of pins. The 22 required address lines are passed through 

select logic external to the chip and multiplexed onto the 11 address lines. 
1. First, 11 address signals are passed to the chip to define the row address of the 

array, 

2. and then the other 11 address signals are presented for the column address. 

3. These signals are accompanied by row address select(RAS) and column address 

select(CAS) signals to provide timing to the chip 

4. The write enable(WE) and output enable(OE) pins determine whether a write or 

read operation is performed. 



 

 

5.1.4 Chip Packaging 

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip organized. The package 

includes 32 pins. The pins support the following signal lines: 

• The address of the word being accessed. For 1M words, a total of 220 pins are needed 

(A0–A19). 

• The data to be read out, consisting of 8 lines (D0–D7). 

• The power supply to the chip (VCC) . 

• A ground pin . A chip enable (CE) pin. Because there may be more than one memory 

chip, each of which is connected to the same address bus, the CE pin is used to indicate 

whether or not the address is valid for this chip.. 

• A program voltage(Vpp)that is supplied during programming (write operations). 

A typical DRAM pin configuration is shown in Figure 5.4b , for a 16-Mbit chip organized as 4M 

x 4. Because a RAM can be updated, the data pins are input/output. 

• The write enable (WE) and output enable (OE) pins indicate whether this is a write 

or read operation. 

• Because the DRAM is accessed by row and column, and the address is multiplexed, 

only 11 address pins are needed to specify the 4M row/column combinations: 2 11 × 

2 11 = 2 22 = 4M 

• The row address select (RAS) and column address select (CAS) pins. 

•  Finally, the no connect (NC) pin is provided so that there are an even number of pins. 



 

5.2 Advanced DRAM Organization 

In recent years, a number of enhancements to the basic DRAM architecture have been 

explored, and some of these are now on the market. The schemes that currently dominate the 

market are SDRAM, DDR-DRAM, and RDRAM. 

 

5.2.1 SDRAM(Synchronous DRAM) 

Synchronous dynamic random access memory (SDRAM) is dynamic random access 

memory (DRAM) with an interface synchronous with the system bus carrying data between 

the CPU and the memory controller hub. SDRAM has a rapidly responding synchronous 

interface, which is in sync with the system bus. SDRAM waits for the clock signal before it 

responds to control inputs. 

• The speed of SDRAM is rated in MHz rather than in nanoseconds (ns). 

• This makes it easier to compare the bus speed and the RAM chip speed. 

• You can convert the RAM clock speed to nanoseconds by dividing the chip 

speed into 1 billion ns (which is one second). For example, an 83 MHz RAM 

would be equivalent to 12 ns. 

• The SDRAM performs best when it is transferring large blocks of data 

sequentially, such as for applications like word processing, spreadsheets, and 

multimedia. 

Table 5.1 DRAM Pin Assignments 
 



In source-synchronous SDR interfaces, one edge of the clock, typically the rising edge, 

transfers the data.As shown in Figure 5.5,For the SDRAM operation, the burst length is 4 

and the latency is 2. The burst read command is initiated by having and low while holding 

and high at the rising edge of the clock. The address inputs determine the starting column 

address for the burst, and the mode register sets the type of burst (sequential or interleave) 

and the burst length (1, 2, 4, 8, full page). The delay from the start of the command to when 

the data from the first cell appears on the outputs is equal to the value of the latency that is 

set in the mode register. 

 

 

 

5.2.2 DDR SDRAM 

SDRAM is limited by the fact that it can only send data to the processor once per bus clock 

cycle.A new version of SDRAM, referred to as double-data-rate SDRAM can send data twice per 

clock cycle, once on the rising edge of the clock pulse and once on the falling edge. DDR achieves 

higher data rates in three ways. 

1. First, the data transfer is synchronized to both the rising and falling edge of the clock, 

rather than just the rising edge. 

2. Second, DDR uses higher clock rate on the bus to increase the transfer rate. 

3. Third, a buffering scheme is used, as explained subsequently. 

In source-synchronous DDR interfaces, data is transferred on both edges of the clock, as shown 

below in Figure 5.6 

 



here are three significant characteristics differentiating SDRAM and DDR: 

1. The main difference is the amount of data transmitted with each cycle, not the speed. 

2. SDRAM sends signals once per clock cycle. DDR transfers data twice per clock 

cycle. (Both SDRAM and DDR use the same frequencies.) 

3. SDRAM uses one edge of the clock. DDR uses both edges of the clock. 

DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 

SDRAM, DDR3 SDRAM, DDR4 SDRAM and DDR5 SDRAM. None of its successors are 

forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, DDR4 and DDR5 

memory modules will not work in DDR1-equipped motherboards, and vice versa. JEDEC has thus 

far defined four generations of the DDR technology (Table 5.2). 

Table 5.2 DDR Characteristics 
 

 

In a prefetch buffer architecture, when a memory access occurs to a row the buffer grabs a 

set of adjacent data words on the row and reads them out ("bursts" them) in rapid-fire 

sequence on the IO pins, without the need for individual column address requests. This 

assumes the CPU wants adjacent datawords in memory, which in practice is very often the 

case. For instance, when a 64 bit CPU accesses a 16-bit-wide DRAM chip, it will need 4 

adjacent 16 bit datawords to make up the full 64 bits. A 4n prefetch buffer would accomplish 

this exactly ("n" refers to the IO width of the memory chip; it is multiplied by the burst depth 

"4" to give the size in bits of the full burst sequence). An 8n prefetch buffer on a 8 bit wide 

DRAM would also accomplish a 64 bit transfer.. 
 

NOTE: With data being transferred 64 bits at a time, 

DDR SDRAM gives a max transfer rate (in bytes/s) = (memory bus clock rate=100MHz) × 2 (for dual 

rate) × 64 (number of bits transferred) / 8 (number of bits/byte)= 1600 MB/s. 

 

 

5.3 Flash Memory 

Another form of semiconductor memory is flash memory. Flash memory is used both for internal 

memory and external memory applications. 

flash memory is intermediate between EPROM and EEPROM in both cost and functionality. Like 

EEPROM, flash memory uses an electrical erasing technology. An entire flash memory can be 

erased in one or a few seconds, which is much faster than EPROM. In addition, it is possible to 

erase just blocks of memory, rather than an entire chip. Flash memory gets its name because the 

microchip is organized so that a section of memory cells are erased in a single action or ―flash.‖ 

https://en.wikipedia.org/wiki/DDR2_SDRAM
https://en.wikipedia.org/wiki/DDR2_SDRAM
https://en.wikipedia.org/wiki/DDR3_SDRAM
https://en.wikipedia.org/wiki/DDR4_SDRAM
https://en.wikipedia.org/wiki/DDR5_SDRAM
https://en.wikipedia.org/wiki/Forward_compatibility
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Memory_module
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/MB/s


Figure 5.7 illustrates the basic operation of a flash memory. For comparison: 

• Figure 5.7a depicts the operation of a transistor. Transistors exploit the properties of 

semiconductors so that a small voltage applied to the gate can be used to control the 

flow of a large current between the source and the drain. 

• (Figure 5.7b),In a flash memory cell, a second gate—called a floating gate, is added 

to the transistor. Initially, the floating gate does not interfere with the operation of 

the transistor. In this state, the cell is deemed to represent binary 1. 

•  Applying a large voltage across the floating gate causes electrons to enter tunnel 

through it and become trapped on the floating gate, where they remain even if the 

power is disconnected (Figure 5.7c). In this state, the cell is deemed to represent 

binary 0. 
 

NOR and NAND Flash Memory 
Flash memory architecture based on floating gate technology ,and There are two distinctive types of flash 

memory, designated as NOR and NAND (Figure 5.8). 

• In NOR flash memory, the basic unit of access is a bit, referred to as a memory cell, every memory 

cell is connected to the floating gate. Cells in NOR flash are connected in parallel to the bit lines so 

that each cell can be read/write/erased individually. If any memory cell of the device is turned on 

by the corresponding word line, the bit line goes low. This is similar in function to a NOR logic 

gate. NOR memory is used for storing code and execution 

• NAND flash memory is organized in transistor arrays with 16 or 32 transistors in series. The bit 

line goes low only if all the transistors in the corresponding word lines are turned on(several memory 

cells are connected in parallel.). This is similar in function to a NAND logic gate. NAND memory 

is used for data storage 



(b)NAND structure (a)NOR structure 

 

NAND NOR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)NAND structure (a)NOR structure 

NAND  NOR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Flash Memory Structure 
 


