
Why Software Engineering ?

• The problem is complexity

• Many sources, but size is key:

– UNIX contains 4 million lines of code

Software Engineering Methodologies Slide 1

– UNIX contains 4 million lines of code

– Windows 2000 contains 108 lines of code

Software engineering is about managing

this complexity.

What is Software Engineering?What is Software Engineering?

►►The process of solving customers’ problems by the The process of solving customers’ problems by the
systematic development and evolution of large, systematic development and evolution of large,
highhigh--quality software systems within cost, time quality software systems within cost, time
and other constraintsand other constraints

What is Software Engineering?What is Software Engineering?

•SE
DR.Z

AINA

B N.

NEM

•2

and other constraintsand other constraints

►►Note:Note:

�� Process, systematic (not ad hoc), evolutionary… Process, systematic (not ad hoc), evolutionary…

�� Constraints: high quality, cost, time, meets user Constraints: high quality, cost, time, meets user
requirementsrequirements

What is software?

• Computer programs and associated documentation

Software Engineering Methodologies Slide 3

• Software products may be developed for a particular
customer or may be developed for a general market

• Software products may be

– Generic - developed to be sold to a range of different
customers

– Bespoke (custom) - developed for a single customer
according to their specification

What is software engineering?

Software engineering is an engineering discipline

which is concerned with all aspects of software

production

Software Engineering Methodologies Slide 4

Software engineers should

– adopt a systematic and organised approach to their work

– use appropriate tools and techniques depending on

• the problem to be solved,

• the development constraints and

• the resources available

What is the difference between software

engineering and computer science?

Computer Science Software Engineering

is concerned with

� the practicalities of

Software Engineering Methodologies Slide 5

Computer science theories are currently
insufficient to act as a complete underpinning

for software engineering ���

� theory

� fundamentals

� the practicalities of

developing

� delivering useful software

ALC1

Slide 5

ALC1 دعامة
AL Laith Co, 10/7/2018

What is the difference between software

engineering and system engineering?

• System engineering is concerned with all aspects
of computer-based systems development including
hardware, software and process engineering

Software Engineering Methodologies Slide 6

• Software engineering is part of this process

• System engineers are involved in

system specification, architectural design,
integration and deployment

What is a software process?

• A set of activities whose goal is the
development or evolution of software

• Generic activities in all software processes are:

Software Engineering Methodologies Slide 7

• Generic activities in all software processes are:

– Specification - what the system should do and its
development constraints

– Development - production of the software
system(design +program).

– Validation - checking that the software is what the
customer wants

– Evolution - changing the software in response to
changing demands

What is a software process model?

A simplified representation of a software process,
presented from a specific perspective

• Examples of process perspectives:

Workflow perspective represents inputs, outputs and dependencies

Data-flow perspective represents data transformation activities

Software Engineering Methodologies Slide 8

Data-flow perspective represents data transformation activities

Role/action perspective represents the roles/activities of the
people involved in software process

• Generic process models

– Waterfall

– Evolutionary development

– Formal transformation

– Integration from reusable components

What are the costs of software

engineering?

• Roughly 60% of costs are development costs,

40% are testing costs. For custom software, evolution

costs often exceed development costs

Software Engineering Methodologies Slide 9

• Costs vary depending on the1- type of system being

developed and 2-the requirements of system

attributes such as performance and system reliability

• Distribution of costs depends on the development

model that is used

What are software engineering

methods?

Structured approaches to software development

which include system models, notations, rules, design

advice and process guidance

Software Engineering Methodologies Slide 10

• Model descriptions (Descriptions of graphical

models which should be produced)

• Rules (Constraints applied to system models)

• Recommendations (Advice on good design practice)

• Process guidance (What activities to follow)

What is CASE ?

(Computer-Aided Software Engineering)

Software systems which are intended to provide
automated support for software process activities, such
as requirements analysis, system modelling, debugging
and testing

Software Engineering Methodologies Slide 11

• Upper-CASE

– Tools to support the early process
activities of requirements and design

• Lower-CASE

– Tools to support later activities such as
programming, debugging and testing

What are the attributes of good

software?

• Maintainability

The software should deliver the required functionality

and performance to the user and should be

maintainable, dependable and usable

Software Engineering Methodologies Slide 12

• Maintainability

– Software must evolve to meet changing needs

• Dependability

– Software must be trustworthy

• Efficiency

– Software should not make wasteful use of system resources

• Usability

– Software must be usable by the users for which it was designed

What are the key challenges

facing software engineering?

Software engineering in the 21st century faces

three key challenges:

• Legacy systems

– Old, valuable systems must be maintained and updated

Software Engineering Methodologies Slide 13

– Old, valuable systems must be maintained and updated

• Heterogeneity

– Systems are distributed and include

a mix of hardware and software

• Delivery

– There is increasing pressure

for faster delivery of software

Professional and ethical

responsibility

• Software engineering involves wider responsibilities
than simply the application of technical skills

• Software engineers must behave in an honest and

Software Engineering Methodologies Slide 14

• Software engineers must behave in an honest and
ethically responsible way if they are to be respected
as professionals

• Ethical behaviour is more than
simply upholding the law

Managing the Software Process

2

11.1 What is Project Management?

Project management encompasses all the activities
needed to plan and execute a project:

• Deciding what needs to be done
• Estimating costs
• Ensuring there are suitable people to undertake the

project
• Defining responsibilities
• Scheduling
• Making arrangements for the work
• continued ...

3

 What is Project Management?

• Directing
• Being a technical leader
• Reviewing and approving decisions made by others
• Building morale and supporting staff
• Monitoring and controlling
• Co-ordinating the work with managers of other projects
• Reporting
• Continually striving to improve the process

4

11.2 Software Process Models

Software process models are general approaches for
organizing a project into activities.

• Help the project manager and his or her team to decide:
—What work should be done;
—In what sequence to perform the work.

• The models should be seen as aids to thinking, not rigid
prescriptions of the way to do things.

• Each project ends up with its own unique plan.

5

The waterfall model

6

The waterfall model

The classic way of looking at S.E. that accounts for the
importance of requirements, design and quality assurance.

• The model suggests that software engineers should work in
a series of stages.

• Before completing each stage, they should perform quality
assurance (verification and validation).

• The waterfall model also recognizes, to a limited extent,
that you sometimes have to step back to earlier stages.

7

Limitations of the waterfall model

• The model implies that you should attempt to complete a
given stage before moving on to the next stage

—Does not account for the fact that requirements
constantly change.

—It also means that customers can not use anything
until the entire system is complete.

• The model makes no allowances for prototyping.
• It implies that you can get the requirements right by

simply writing them down and reviewing them.
• The model implies that once the product is finished,

everything else is maintenance.

8

The phased-release model

9

The phased-release model

It introduces the notion of incremental development.
• After requirements gathering and planning, the project

should be broken into separate subprojects, or phases.
• Each phase can be released to customers when ready.
• Parts of the system will be available earlier than when

using a strict waterfall approach.
• However, it continues to suggest that all requirements be

finalized at the start of development.

10

The evolutionary model

11

The evolutionary model

It shows software development as a series of hills, each
representing a separate loop of the spiral.

• Shows that loops, or releases, tend to overlap each other.
• Makes it clear that development work tends to reach a

peak, at around the time of the deadline for completion.
• Shows that each prototype or release can take

—different amounts of time to deliver;
—differing amounts of effort.

12

The concurrent engineering model

13

The concurrent engineering model

It explicitly accounts for the divide and conquer
principle.

• Each team works on its own component, typically
following a spiral or evolutionary approach.

• There has to be some initial planning, and periodic
integration.

14

Choosing a process model

• From the waterfall model:
—Incorporate the notion of stages.

• From the phased-release model:
—Incorporate the notion of doing some initial high-level analysis,

and then dividing the project into releases.
• From the spiral model:

—Incorporate prototyping and risk analysis.
• From the evolutionary model:

—Incorporate the notion of varying amounts of time and work,
with overlapping releases.

• From concurrent engineering:
—Incorporate the notion of breaking the system down into

components and developing them in parallel.

15

11.3 Cost estimation
To estimate how much software-engineering time will be
required to do some work.

• Elapsed time
—The difference in time from the start date to the end

date of a task or project.
• Development effort

—The amount of labour used in person-months or
person-days.

—To convert an estimate of development effort to an
amount of money:

 You multiply it by the weighted average cost (burdened cost)
of employing a software engineer for a month (or a day).

16

Principles of effective cost estimation

Principle: Include all activities when making estimates.
• The time required for all development activities must be

taken into account.
• Including:

- Prototyping
- Design
- Inspecting
- Testing
- Debugging
- Writing user documentation
- Deployment.

17

11.4 Building Software Engineering Teams

Software engineering is a human process.
• Choosing appropriate people for a team, and assigning

roles and responsibilities to the team members, is
therefore an important project management skill

• Software engineering teams can be organized in many
different ways

a) Egoless b) Chief programmer c) Strict hierarchy

18

Software engineering teams

Egoless team:
• In such a team everybody is equal, and the team works

together to achieve a common goal.
• Decisions are made by consensus.
• Most suited to difficult projects with many technical

challenges.

19

Software engineering teams

Hierarchical manager-subordinate structure:
• Each individual reports to a manager and is responsible

for performing the tasks delegated by that manager.
• Suitable for large projects with a strict schedule where

everybody is well-trained and has a well-defined role.
• However, since everybody is only responsible for their

own work, problems may go unnoticed.

20

Software engineering teams

Chief programmer team:
• Midway between egoless and hierarchical.
• The chief programmer leads and guides the project.
• He or she consults with, and relies on, individual

specialists.

21

Choosing an effective size for a team

• For a given estimated development effort, in person
months, there is an optimal team size.

—Doubling the size of a team will not halve the
development time.

• Subsystems and teams should be sized such that the total
amount of required knowledge and exchange of
information is reduced.

• For a given project or project iteration, the number of
people on a team will not be constant.

• You can not generally add people if you get behind
schedule, in the hope of catching up.

22

Skills needed on a team

• Architect
• Project manager
• Configuration management and build specialist
• User interface specialist
• Technology specialist
• Hardware and third-party software specialist
• User documentation specialist
• Tester

23

11.5 Project Scheduling and Tracking

• Scheduling is the process of deciding:
—In what sequence a set of activities will be

performed.
—When they should start and be completed.

• Tracking is the process of determining how well you are
sticking to the cost estimate and schedule.

24

PERT charts

A PERT chart shows the sequence in which tasks must
be completed.

• In each node of a PERT chart, you typically show the
elapsed time and effort estimates.

• The critical path indicates the minimum time in which it
is possible to complete the project.

25

Example of a PERT chart

26

Gantt charts

A Gantt chart is used to graphically present the start
and end dates of each software engineering task

• One axis shows time.
• The other axis shows the activities that will be

performed.
• The black bars are the top-level tasks.
• The white bars are subtasks
• The diamonds are milestones:

—Important deadline dates, at which specific events
may occur

27

Example of a Gantt chart

28

11.6 Contents of a Project Plan

A. Purpose
B. Background information
C. Processes to be used
D. Subsystems and planned releases
E. Risks and challenges
F. Tasks
G. Cost estimates
H. Team
I. Schedule and milestones

29

11.7 Difficulties and Risks in Project
Management

• Accurately estimating costs is a constant challenge
—Follow the cost estimation guidelines.

• It is very difficult to measure progress and meet
deadlines

—Improve your cost estimation skills so as to account
for the kinds of problems that may occur.

—Develop a closer relationship with other members of
the team.

—Be realistic in initial requirements gathering, and
follow an iterative approach.

—Use earned value charts to monitor progress.

30

Difficulties and Risks in Project
Management

• It is difficult to deal with lack of human resources or
technology needed to successfully run a project

—When determining the requirements and the project
plan, take into consideration the resources available.

—If you cannot find skilled people or suitable technology
then you must limit the scope of your project.

31

Difficulties and Risks in Project
Management

• Communicating effectively in a large project is hard
—Take courses in communication, both written and

oral.
—Learn how to run effective meetings.
—Review what information everybody should have,

and make sure they have it.
—Make sure that project information is readily

available.
—Use ‘groupware’ technology to help people

exchange the information they need to know

32

Difficulties and Risks in Project
Management

• It is hard to obtain agreement and commitment from
others

—Take courses in negotiating skills and leadership.
—Ensure that everybody understands

- The position of everybody else.
- The costs and benefits of each alternative.
- The rationale behind any compromises.

—Ensure that everybody’s proposed responsibility is
clearly expressed.

—Listen to everybody’s opinion, but take assertive
action, when needed, to ensure progress occurs.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 1

Project Planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 2

Project planning

 Probably the most time-consuming project
management activity

 Continuous activity from initial concept through
to system delivery. Plans must be regularly
revised as new information becomes available

 Various different types of plan may be developed
to support the main software project plan that is
concerned with schedule and budget

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 3

Types of project plan

Plan Description
Quality plan Describes the quality procedures and

standards that will be used in a project.
Validation plan Describes the approach, resources and

schedule used for system validation.
Configuration
management plan

Describes the configuration management
procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of
the system, maintenance costs and effort
required.

Staff development plan. Describes how the skills and experience of
the project team members will be
developed.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 4

Project plan structure

 Introduction
 Project organisation
 Risk analysis
 Hardware and software resource requirements
 Work breakdown
 Project schedule
 Monitoring and reporting mechanisms

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 5

Activity organization

 Activities in a project should be organised to
produce tangible outputs for management to
judge progress

 Milestones are the end-point of a process activity
 Deliverables are project results delivered to

customers
 The waterfall process allows for the

straightforward definition of progress milestones

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 6

Milestones in the RE process

Evaluation
report

Prototype
development

Requirements
definition

Requirements
analysis

Feasibility
report

Feasibility
study

Architectural
design

Design
study

Requirements
specification

Requirements
specification

ACTIVITIES

MILESTONES

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 7

Project scheduling

 Split project into tasks and estimate time and
resources required to complete each task

 Organize tasks concurrently to make optimal
use of workforce

 Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete

 Dependent on project managers intuition and
experience

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 8

Scheduling problems

 Estimating the difficulty of problems and hence
the cost of developing a solution is hard

 Productivity is not proportional to the number of
people working on a task

 Adding people to a late project makes it later
because of communication overheads

 The unexpected always happens. Always allow
contingency in planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 9

Bar charts and activity
networks

 Graphical notations used to illustrate the project
schedule

 Show project breakdown into tasks. Tasks
should not be too small. They should take about
a week or two

 Activity charts show task dependencies and the
the critical path

 Bar charts show schedule against calendar time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 10

Task durations and
dependencies

Task Duration (days) Dependencies
T1 8
T2 15
T3 15 T1 (M1)
T4 10
T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 11

Activity network

start

T2

M3
T6

Finish

T10

M7T5

T7

M2
T4

M5

T8

4/7/99

8 days

14/7/99 15 days

4/8/99

15 days

25/8/99

7 days

5/9/99

10 days

19/9/99

15 days

11/8/99

25 days

10 days

20 days

5 days
25/7/99

15 days

25/7/99

18/7/99

10 days

T1

M1 T3
T9

M6

T11

M8

T12

M4

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 12

Staff allocation
4/7 11/7 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

Fred

Jane

Anne

Mary

Jim

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 13

Risk identification

 Technology risks
 People risks
 Organisational risks
 Requirements risks
 Estimation risks

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 14

Risks and risk types
Risk type Possible risks
Technology The database used in the system cannot process as

many transactions per second as expected.
Software components which should be reused contain
defects which limit their functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different
management are responsible for the project.
Organisational financial problems force reductions in the
project budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements which require major design
rework are proposed.
Customers fail to understand the impact of requirements
changes.

Estimation The time required to develop the software is
underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 15

Key points

 Planning and estimating are iterative processes
which continue throughout the course of a
project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 16

 A project milestone is a predictable state where
some formal report of progress is presented to
management.

 Risks may be project risks, product risks or
business risks

 Risk management is concerned with identifying
risks which may affect the project and planning to
ensure that these risks do not develop into major
threats

Key points

Requirements and ArchitectureRequirements and Architecture

DR.ZAINAB N.NEMER 1

[§1 : 2]

Requirements in Context
 Requirements may vary

 in level of abstraction, contents
 from one context to another

 System requirements
 result from an analysis or discovery

process
 Software requirements

 result from a design process
involving requirements allocation

 Sometimes there is no distinction
between them

Requirements
definition

System
design

Software
design

system
requirements

software
requirements

constraints

problem

needs

DR.ZAINAB N.NEMER

[§1 : 3]

Terminology
 A requirement is a technical objective which is imposed upon

the software, i.e., anything that might affect the kind of software
that is produced

 A requirement may be imposed by
 the customer
 the developer
 the operating environment

 The source, rationale, and nature of the requirement must be
documented

 Requirements fall into two broad categories
 functional
 non-functional

DR.ZAINAB N.NEMER

[§1 : 4]

Functional Requirements
 Functional requirements are concerned with what the software

must do
 capabilities, services, or operations

 Functional requirements are not concerned with how the
software does things, i.e., they must be free of design
considerations

 Functional requirements are incomplete unless they capture all
relevant aspects of the software’s environment

 they define the interactions between the software and the
environment

 the environment may consist of users, other systems, support
hardware, operating system, etc.

 the system/environment boundary must be defined

DR.ZAINAB N.NEMER

[§1 : 5]

Non-Functional Requirements

 Non-functional requirements place restrictions on the
range of acceptable solutions

 Non-functional requirements cover a broad range of
issues

 interface constraints
 performance constraints
 operating constraints
 life-cycle constraints
 economic constraints
 political constraints
 manufacturing

DR.ZAINAB N.NEMER

[§1 : 6]

Software Requirements
Specification (SRS)

 Point of origin
 elicitation and/or allocation

activity
 Purpose

 provide a baseline for all
software development activities

 Focus
 software/environment

interactions
 technical reformulation of

constraints

 Nature
 highly technical

 Usage
 design
 testing
 technical studies

DR.ZAINAB N.NEMER

[§1 : 7]

Sample SRS Table of Contents

1. Introduction (ANSI/IEEE STD-830-1984)
2. General description
3. Specific requirements

3.1 Functional requirements
- input/processing/output

3.2 External interface requirements
- interface specification

4. Performance requirements (non-functional)
5. Design constraints
6. Attributes
7. Other requirements

DR.ZAINAB N.NEMER

[§1 : 8]

Traceability
 Traceability is a property of the software development process

 refers to the ability to relate elements of a specification to those
design components that ensure their satisfiability

 relations that are precise and narrow in scope simplify analysis
 relations that are diffused often entail complex analysis

 Specifications may be
 functional or non-functional
 part of the system requirements or the byproduct of design

 Traceability is a useful tool, but not a substitute for verification
 Most traceability chains run through the software architecture

 requirements to design
 design to code

DR.ZAINAB N.NEMER

[§1 : 9]

Requirements Verification

 Requirements verification is an activity directed
towards the discovery of specification errors

 The ultimate goal is to ensure that the specification
(when considered on its own) is

 correct
 consistent
 complete

 The verification must be carried out against a model
(formal or informal)

 Formal and semi-formal specifications can be
checked out by tools

DR.ZAINAB N.NEMER

[§1 : 10]

Requirements Validation

 Concerned with establishing
that specified requirements
represent the needs of the
customer and/or user

 Needs are not reflected by
any model or document

 Thus, validation cannot be
performed in a mechanical way

 Good communication is
the key to a successful
validation

 well-defined terminology
 well-written and simple

specifications
 formal reviews
 rapid prototypes
 simulations

DR.ZAINAB N.NEMER

[§1 : 11]

Data Flow Models
 Dataflow diagram notation

 functions—deterministic
input/output transformations
triggered by the presence of
all needed inputs

 flows—unbounded queues
 stores—global system data
 terminators—interface

models
 minispecs—semantics of

the lowest level functions

verify
customer

update
stock

update
customer

data

prepare
order

inventory

mailing
address

customer
file

item

item
profile

order

phone
order

shipping

operator

customers

DR.ZAINAB N.NEMER

[§1 : 12]

uses

extends

authorization

phone call

charging

Use Case Models
 Actors

 model the environment and the
users

 initiate activity by providing
stimuli

 can be primary or secondary
 Use cases

 are complete courses of action
initiated by actors (basic or
alternative)

 can be extended by (interrupt
analogy) or use other use cases
(call analogy)

DR.ZAINAB N.NEMER

[§1 : 13]

Architecture Design Phase

Technical goals
 Identify the principal components that make up

the system and their (internal and external)
interfaces

 Ensure compliance with respect to expectations
captured in the requirements specification

 Understand, assess, and control risks
 Ensure predictability of the development process

through accurate planning

DR.ZAINAB N.NEMER

[§1 : 14]

Concluding Remarks

 Development of software based systems is complex
 multiple perspectives
 different notations
 significant and sophisticated analysis

 Requirements elicitation and specification should
focus on communication among people

 Requirements must be traceable through the
architecture to the code itself (and vice versa)

 The design process should focus mainly on
fundamentals and on the creative activities

DR.ZAINAB N.NEMER

6. Software Lifecycle Models

A software lifecycle model is a standardised

format for

• planning

• organising, and

• running

a new development project.

DR.ZAINAB N.NEMER CHAP5 1

Software Engineering Methods

• Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks, and guidelines
for checking both the process and the product

• These are categorized as
 Heuristic methods

dealing with informal approaches.
 Formal methods

dealing with mathematically based approaches.
 Prototyping methods

dealing with software engineering approaches based on various
forms of prototypings

Heuristic Methods

• These are categories as
 Structured methods

 The system is built from a functional viewpoint, starting with a high-level view
and progressively refining this into a more detailed design.

 Data-oriented methods
 the starting points are the data structures that a program manipulates

rather than the function it performs

 Object-oriented methods
 The system is viewed as a collection of objects rather than functions

 Domain-specific methods
 includes specialized methods for developing systems which

involve real-time, safety, or security aspects

Formal Methods

• These are categorized as
Specification languages and notations

This topic concerns the specification notation or language
used. Specification languages can be classified as model-
oriented, property-oriented, or behavior-oriented

Refinement
This topic deals with how the method refines (or transforms)

the specification into a form which is closer to the desired final
form of an executable program.

Verification/Proving properties:
This topic covers the verification properties that are specific to

the formal approach, including both theorem proving and
model checking

Prototyping Methods

• These are categorized as
Prototyping styles

The prototyping styles topic identifies the various approaches:
throwaway, evolutionary, and executable specification

Prototyping targets
Examples of the targets of a prototyping method may be

requirements, architectural design, or the user interface

Prototyping evaluation techniques
This topic covers the ways in which the results of a

prototype exercise are used.s

Project constraints

money

time
Computing
resources

 staff

programmers managers
designers

Examples of Project Constraints
DR.ZAINAB N.NEMER CHAP5 6

A project plan contains much information,

but must at least describe:

• resources needed

(people, money, equipment, etc)

• dependency & timing of work

(flow graph, work packages)

• rate of delivery (reports, code, etc)

It is impossible to measure rate of progress

except with reference to a plan.

DR.ZAINAB N.NEMER CHAP5 7

6.3. What is a Lifecycle Model?

Definition.

A (software/system) lifecycle model is a

description of the sequence of activities

carried out in an SE project, and the relative

order of these activities.

DR.ZAINAB N.NEMER CHAP5 8

There are hundreds of different lifecycle models
to choose from, e.g:
• waterfall,
• code-and-fix
• spiral
• rapid prototyping
• unified process (UP)
• agile methods, extreme programming (XP)
• COTS …
but many are minor variations on a smaller
number of basic models.

DR.ZAINAB N.NEMER CHAP5 9

DR.ZAINAB N.NEMER CHAP5 10

6.4. The Waterfall Model

• The waterfall model is the classic lifecycle

model – it is widely known, understood

and (commonly?) used.

• In some respect, waterfall is the ”common

sense” approach.

• Introduced by Royce 1970.

DR.ZAINAB N.NEMER CHAP5 11

DR.ZAINAB N.NEMER CHAP5 12

User Requirements

Software Requirements

Architecture Design

Detailed design & Coding

Testing

Delivery

The Waterfall
Lifecycle Workflow

Time

User Requirements Document

Software Requirements
Document

Architectural Design
Document

Detailed
Design
& Code

phase
output

”Swimming
upstream”

DR.ZAINAB N.NEMER CHAP5 13

Advantages

1. Easy to understand and implement.

2. Widely used and known (in theory!)

3. Reinforces good habits: define-before- design,
design-before-code

4. Identifies deliverables and milestones

5. Document driven, URD, SRD, … etc. Published
documentation standards, e.g. PSS-05.

6. Works well on mature products and weak teams.

DR.ZAINAB N.NEMER CHAP5 14

Disadvantages I

1. Idealised, doesn’t match reality well.

2. Doesn’t reflect iterative nature of
exploratory development.

3. Unrealistic to expect accurate
requirements so early in project

4. Software is delivered late in project,
delays discovery of serious errors.

DR.ZAINAB N.NEMER CHAP5 15

Disadvantages II

5. Difficult to integrate risk management

6. Difficult and expensive to make changes

to documents, ”swimming upstream”.

7. Significant administrative overhead,

costly for small teams and projects.

DR.ZAINAB N.NEMER CHAP5 16

Advantages

1. No administrative overhead

2. Signs of progress (code) early.

3. Low expertise, anyone can use it!

4. Useful for small “proof of concept”
projects, e.g. as part of risk reduction.

DR.ZAINAB N.NEMER CHAP5 17

Disadvantages

1. Dangerous!
1. No visibility/control

2. No resource planning

3. No deadlines

4. Mistakes hard to detect/correct

2. Impossible for large projects,

communication breakdown, chaos.

DR.ZAINAB N.NEMER CHAP5 18

6.7. Rapid Prototyping

Key idea: Customers are non-technical and

usually don’t know what they want/can have.

Rapid prototyping emphasises requirements

analysis and validation, also called:

• customer oriented development,

• evolutionary prototyping
DR.ZAINAB N.NEMER CHAP5 19

Requirements Capture

Quick Design

Build Prototype

Customer Evaluation of
Prototype

Engineer Final
Product

The Rapid
Prototype Workflow

Iterate

DR.ZAINAB N.NEMER CHAP5 20

Advantages

1. Reduces risk of incorrect user requirements

2. Good where requirements are
changing/uncommitted

3. Regular visible progress aids management

4. Supports early product marketing

DR.ZAINAB N.NEMER CHAP5 21

Disadvantages I

1. An unstable/badly implemented prototype
often becomes the final product.

2. Requires extensive customer collaboration
– Costs customers money

– Needs committed customers

– Difficult to finish if customer withdraws

– May be too customer specific, no broad
market

DR.ZAINAB N.NEMER CHAP5 22

Disadvantages II

3. Difficult to know how long project will
last

4. Easy to fall back into code-and-fix
without proper requirements analysis,
design, customer evaluation and feedback.

DR.ZAINAB N.NEMER CHAP5 23

Agile (XP) Manifesto

XP = Extreme Programming emphasises:

• Individuals and interactions
– Over processes and tools

• Working software
– Over documentation

• Customer collaboration
– Over contract negotiation

• Responding to change
– Over following a plan

DR.ZAINAB N.NEMER CHAP5 24

6.8.1. Agile Principles
(Summary)

• Continuous delivery of software

• Continuous collaboration with customer

• Continuous update according to changes

• Value participants and their interaction

• Simplicity in code, satisfy the spec

DR.ZAINAB N.NEMER CHAP5 25

6.9. XP Practices (Summary)

• Programming in pairs

• Test driven development

• Continuous planning, change , delivery

• Shared project metaphors, coding standards
and ownership of code

• No overtime! (Yeah right!)

DR.ZAINAB N.NEMER CHAP5 26

Advantages

• Lightweight methods suit small-medium
size projects

• Produces good team cohesion

• Emphasises final product

• Iterative

• Test based approach to requirements and
quality assurance

DR.ZAINAB N.NEMER CHAP5 27

Disadvantages

• Difficult to scale up to large projects where
documentation is essential

• Needs experience and skill if not to
degenerate into code-and-fix

• Programming pairs is costly

• Test case construction is a difficult and
specialised skill.

DR.ZAINAB N.NEMER CHAP5 28

6.11. COTS

• COTS =
Commercial Off-The-Shelf software

• Engineer together a solution from existing
commercial software packages using
minimal software ”glue”.

• E.g. using databases, spread sheets, word
proccessors, graphics software, web
browsers, etc.

DR.ZAINAB N.NEMER CHAP5 29

Advantages
• Fast, cheap solution
• May give all the basic functionality
• Well defined project, easy to run
Disadvantages
• Limited functionality
• Licensing problems, freeware, shareware,

etc.
• License fees, maintainance fees, upgrade

compatibility problems

DR.ZAINAB N.NEMER CHAP5 30

Introduction to UML

DR.ZAINAB N.NEMMER 1

What is UML?

• Unified Modeling Language
• UML is a modeling language to express and

design documents, software
– Independent of implementation language

DR.ZAINAB N.NEMMER 2

Models, Views, Diagrams

DR.ZAINAB N.NEMMER 3

UML Baseline

• Use Case Diagrams
• Class Diagrams
• Package Diagrams
• Interaction Diagrams

– Sequence

– Collaboration

• Activity Diagrams
• State Transition Diagrams

• Deployment Diagrams

DR.ZAINAB N.NEMMER 4

Use Case Diagrams

• Used during requirements
elicitation to represent external
behavior

• Actors represent roles, that is, a
type of user of the system

• Use cases represent a sequence of
interaction for a type of
functionality; summary of
scenarios

• The use case model is the set of all
use cases. It is a complete
description of the functionality of
the system and its environment

Passenger

PurchaseTicket

DR.ZAINAB N.NEMMER 5

Actors

• An actor models an external entity which
communicates with the system:
– User

– External system

– Physical environment

• An actor has a unique name and an optional
description.

• Examples:
– Passenger: A person in the train

– GPS satellite: Provides the system with GPS
coordinates

Passenger

DR.ZAINAB N.NEMMER 6

Use Case
A use case represents a class of functionality

provided by the system as an event flow.

A use case consists of:

• Unique name

• Participating actors

• Entry conditions

• Flow of events

• Exit conditions

• Special requirements

PurchaseTicket

DR.ZAINAB N.NEMMER 7

Use Case Diagram: Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:
• Passenger standing in front of

ticket distributor.
• Passenger has sufficient

money to purchase ticket.

Exit condition:
• Passenger has ticket.

Event flow:

1. Passenger selects the number
of zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of at
least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!
DR.ZAINAB N.NEMMER 8

The <<extends>> Relationship
• <<extends>> relationships represent

exceptional or seldom invoked cases.

• The exceptional event flows are
factored out of the main event flow for
clarity.

• Use cases representing exceptional
flows can extend more than one use
case.

• The direction of a <<extends>>
relationship is to the extended use case

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

DR.ZAINAB N.NEMMER 9

The <<includes>>
Relationship

• <<includes>> relationship
represents behavior that is
factored out of the use case.

• <<includes>> behavior is
factored out for reuse, not because
it is an exception.

• The direction of a
<<includes>> relationship is to
the using use case (unlike
<<extends>> relationships).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extends>>

Cancel

<<extends>>

<<includes>>

CollectMoney

<<includes>>

DR.ZAINAB N.NEMMER 10

Use Cases are useful for…

• Determining requirements
– New use cases often generate new requirements as the

system is analyzed and the design takes shape.

• Communicating with clients
– Their notational simplicity makes use case diagrams a good

way for developers to communicate with clients.

– May require some explanation.

• Generating test cases
– The collection of scenarios for a use case may suggest a

suite of test cases for those scenarios.

DR.ZAINAB N.NEMMER 11

Class Diagrams

• Gives an overview of a system by showing its
classes and the relationships among them.
– Class diagrams are static
– they display what interacts but not what happens

when they do interact

• Also shows attributes and operations of each
class

• Good way to describe the overall architecture
of system components

DR.ZAINAB N.NEMMER 12

Classes – Not Just for Code

• A class represent a concept
• A class encapsulates state (attributes) and behavior (operations).
• Each attribute has a type.
• Each operation has a signature.
• The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

DR.ZAINAB N.NEMMER 13

Instances

• An instance represents a phenomenon.

• The name of an instance is underlined and can
contain the class of the instance.

• The attributes are represented with their values.

zone2price = {
{‘1’, .20},
{‘2’, .40},
{‘3’, .60}}

tarif_1974:TariffSchedule

DR.ZAINAB N.NEMMER 14

UML Class Notation

• A class is a rectangle divided into three parts
– Class name
– Class attributes (i.e. data members, variables)
– Class operations (i.e. methods)

• Modifiers
– Private: -
– Public: +
– Protected: #
– Static: Underlined (i.e. shared among all members of the class)

• Abstract class: Name in italics

DR.ZAINAB N.NEMMER 15

Binary Association

myB.service(); myA.doSomething();

Binary Association: Both entities “Know About” each other

DR.ZAINAB N.NEMMER 16

Unary Association

A knows about B, but B knows nothing about A

Arrow points in direction
of the dependency

myB.service();

DR.ZAINAB N.NEMMER 17

Aggregation

Aggregation is an association with a “collection-member” relationship

void doSomething()
 aModule.service();

Hollow diamond on
the Collection side

No sole ownership implied

DR.ZAINAB N.NEMMER 18

Composition

Composition is Aggregation with:
Lifetime Control (owner controls construction, destruction)
Part object may belong to only one whole object

Filled diamond on
side of the Collection

 members[0] =
 new Employee();

 …

 delete members[0];

DR.ZAINAB N.NEMMER 19

Inheritance

Standard concept of inheritance

class B() extends A

…

Base Class

Derived Class

DR.ZAINAB N.NEMMER 20

UML Multiplicities

Multiplicities Meaning

0..1
zero or one instance. The notation n . . m

indicates n to m instances.

0..* or *
no limit on the number of instances

(including none).

1 exactly one instance

1..* at least one instance

Links on associations to specify more details about the relationship

DR.ZAINAB N.NEMMER 21

UML Class Example

DR.ZAINAB N.NEMMER 22

Association Details

• Can assign names to the ends of the
association to give further information

+getName() : string
+setName()
-calcInternalStuff(in x : byte, in y : decimal)

-Name : string
+ID : long
#Salary : double
-adfaf : bool

Employee

-members : Employee

Team -group

1

-individual

*

DR.ZAINAB N.NEMMER 23

Static vs. Dynamic Design

• Static design describes code structure and object
relations
– Class relations
– Objects at design time
– Doesn’t change

• Dynamic design shows communication between
objects
– Similarity to class relations
– Can follow sequences of events
– May change depending upon execution scenario
– Called Object Diagrams

DR.ZAINAB N.NEMMER 24

Sequence Diagram Format
Actor from
Use Case Objects

1

2
3

4

Lifeline Calls = Solid Lines
Returns = Dashed Lines

Activation

DR.ZAINAB N.NEMMER 25

Sequence Diagram : Timing
Slanted Lines show propagation delay of messages
Good for modeling real-time systems

If messages cross this is usually problematic – race conditionsDR.ZAINAB N.NEMMER 26

Sequence Diagram Example
Hotel Reservation

DR.ZAINAB N.NEMMER 27

Activity Diagrams

• Fancy flowchart
– Displays the flow of activities involved in a single process
– States

• Describe what is being processed
• Indicated by boxes with rounded corners

– Swim lanes
• Indicates which object is responsible for what activity

– Branch
• Transition that branch
• Indicated by a diamond

– Fork
• Transition forking into parallel activities
• Indicated by solid bars

– Start and End

DR.ZAINAB N.NEMMER 28

Sample Activity Diagram

• Ordering System

• May need multiple
diagrams from other
points of view

DR.ZAINAB N.NEMMER 29

Activity Diagram Example

DR.ZAINAB N.NEMMER 30

STRUCTURAL AND BEHAVIOURAL MODELING

1

Chapter 5 System modeling

3. Structural Models

 Structural models of software display the organization
of a system in terms of the components and their
relationships.

 Structural models may be static models, which show the
structure of the system design, or dynamic models,
which show the organization of the system when it is
executing.

 Structural models are created when discussing and
designing the system architecture.

2

Chapter 5 System modeling

Class Diagrams

 Class diagrams are used when developing an object-oriented
system model to show the classes in a system and the
associations between these classes.

 An association is a link between classes that indicates that
there is some relationship between these classes.

 When you are developing models during the early stages of
the software engineering process, objects represent
something in the real world, such as a patient, a
prescription, doctor, a device, etc.

 We have spoken in terms of 'nouns' or 'things.'

3

Chapter 5 System modeling

UML classes and association

4

Here we are also showing multiplicity: one object of type Patient is related to one object of type Patient Record

Chapter 5 System modeling

The Consultation Class (There are all kinds of
classes: domain / entity classes; software
classes, and many 'levels' of these!

5

This is a high level class – perhaps
 a first or second cut at class definition.

Notice much is missing, such as
 parameters, returns, etc. from the
 methods.

These are ‘software classes’ because
 they contain methods (that is, how the
 attributes will be used / manipulated.)

Finer levels of granularity are needed
 to address the shortcomings of this
 class.

But this is a very good way to start your
 analysis and class definition, especially
 when trying to develop classes from
 use cases, where nouns (Consultation)
 and verbs (new, prescribe….) will be
 found in the use case itself.

Chapter 5 System modeling

Generalization

 Generalization is an everyday technique that we use to
 Rather than learn the detailed characteristics of every entity that

we experience, we place these entities in more general classes
(animals, cars, houses, etc.) and learn the characteristics of these
classes.

 This allows us to infer that different members of these classes have
some common characteristics e.g. squirrels and rats are rodents.

 In programming, we refer to this as 'inheritance.'
 Base class and derived classes, or super class and derived

class.... parent and child.... many terms for capturing these
important relationships.

6

Chapter 5 System modeling

Generalization

 In modeling systems, it is often useful to examine the classes in a system to
see if there is scope for generalization.

 In object-oriented languages, such as Java, generalization is implemented
using the class inheritance mechanisms built into the language.

 In a generalization, the attributes and operations associated with higher-level
classes are also associated with (inherited by) the lower-level classes.

 The lower-level classes are subclasses inherit the attributes and operations
from their superclasses. These lower-level classes then add more specific
attributes and operations.

7

 Relationships: Generalization

A relationship among classes where one class shares the
structure and/or behavior of one or more classes

Defines a hierarchy of abstractions in which a subclass
inherits from one or more superclasses
Single inheritance
Multiple inheritance

Generalization is an “is-a-kind of” relationship, or simply,
“is_a” relationship.

Account
balance
name
number

Withdraw()
CreateStatement()

Checking

Withdraw()

Savings

GetInterest()
Withdraw()

Superclass
(parent)

Subclasses

Generalization Relationship

Subclasses inherit both
attributes and methods from
base (parent) class.

Descendents

Example: Single Inheritance

One class inherits from another

Airplane Helicopter Wolf Horse

FlyingThing Animal

Bird

multiple
inheritance

Use multiple inheritance only when needed, and
always with caution !

Example: Multiple Inheritance

A class can inherit from several other classes

Inheritance leverages the similarities among classes

What Gets Inherited?

A subclass inherits its parent’s attributes, operations,
and relationships

A subclass may:
Add additional attributes, operations, relationships
Redefine inherited operations (use caution!)

Common attributes, operations, and/or relationships
are shown at the highest applicable level in the
hierarchy

Truck

tonnage

GroundVehicle

weight

licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
Superclass

(parent)

Subclass

generalization

size

Example: What Gets Inherited

Chapter 5 System modeling

Object class aggregation models

 An aggregation model shows how classes that are
collections are composed of other classes.

 Aggregation models are similar to the part-of relationship
in semantic data models.

13

Relationships

Association
Aggregation
Composition

Dependency
Generalization
Realization

Professor UniversityWorks for

Class

Association

Association Name

Professor University

EmployerEmployee

Role Names

 Relationships: Association

Models a semantic connection among classes

Student Schedule

Whole

Aggregation

This is sometimes
called a ‘has_a’

relationship

Part

Relationships: Aggregation

A special form of association that models a whole-part
relationship between an aggregate (the whole) and
its parts

Student Schedule

Whole

Aggregation

Part

Relationships: Composition

A form of aggregation with strong ownership and
coincident lifetimes
The parts cannot survive the whole/aggregate

Truck

tonnage

GroundVehicle

weight

licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
Superclass

(parent)

Subclass

generalization

size

Example: What Gets Inherited

Chapter 5 System modeling

Key points

 Structural models show the organization and architecture of a
system. Class diagrams are used to define the static structure of
classes in a system and their associations.

19

Chapter 5 System modeling

4. Behavioral Models

 Behavioral models are models of the dynamic behavior of
a system as it is executing. They show what happens or
what is supposed to happen when a system responds to
a stimulus from its environment.

 You can think of these stimuli as being of two types:
 A. Data Some data arrives that has to be processed by the

system.

 B. Events Some event happens that triggers system processing.
Events may have associated data, although this is not always the
case.

20

Chapter 5 System modeling

A. Data-driven Modeling

 Many business systems are data-processing systems that
are primarily driven by data.
They are controlled by the data input to the system, with relatively

little external event processing.

 Data-driven models show the sequence of actions involved
in processing input data and generating an associated
output.

 They are particularly useful during the analysis of
requirements as they can be used to show end-to-end
processing in a system.

21

Chapter 5 System modeling

An Activity Model of the insulin pump’s operation

22

These are used a lot!
They are not flowcharts or flowgraphs; merely ‘activities’ that need to
 or must take place.
(This is an example (later) of a Pipe-Filter Architectural Model)

Chapter 5 System modeling

Order Processing – Sequence Diagram -
behavorial

23

Shows the Sequence of events over time as messages are issued from one object to
 another.
Terms: life of the object; lifelines, actors, unnamed objects, recursion, and more.
Very Important to show the scenarios in motion. Dynamic!

Chapter 5 System modeling

B. Event-Driven Modeling

 Real-time systems are often event-driven, with minimal
data processing.
 For example, a landline phone switching system responds to

events such as ‘receiver off hook’ by generating a dial tone.
 Event-driven modeling shows how a system responds

to external and internal events.

 It is based on the assumption that a system has a finite
number of states and that events (stimuli) may cause a
transition from one state to another.

24

Chapter 5 System modeling

State Machine Models

 These model the behaviour of the system in response to
external and internal events.

 They show the system’s responses to stimuli so are often used
for modeling real-time systems.

 State machine models show system states as nodes and
events as arcs between these nodes. When an event occurs,
the system moves from one state to another.

 Statecharts are an integral part of the UML and are used to
represent state machine models.

25

Key points

 Behavioral models are used to describe the dynamic behavior
of an executing system. This behavior can be modeled from
the perspective of the data processed by the system, or by the
events that stimulate responses from a system.
 Activity diagrams may be used to model the processing of

data, where each activity represents one process step.
 State diagrams are used to model a system’s behavior in

response to internal or external events.
 Model-driven engineering is an approach to software

development in which a system is represented as a set of
models that can be automatically transformed to executable
code.

26

DR ZAINAB N.NEMER

Key points

 Behavioral models are used to describe the dynamic behavior
of an executing system. This behavior can be modeled from
the perspective of the data processed by the system, or by the
events that stimulate responses from a system.

 Activity diagrams may be used to model the processing of
data, where each activity represents one process step.

 State diagrams are used to model a system’s behavior in
response to internal or external events.

27

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 1

User Interface Design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 2

User interface design

 Designing effective interfaces
for software systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 3

Graphical user interfaces

 Most users of business systems interact with
these systems through graphical interfaces
although, in some cases, legacy text-based
interfaces are still used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 4

GUI characteristics

Characteristic Description
Windows Multiple windows allow different information to be

displayed simultaneously on the user’s screen.
Icons Icons different types of information. On some systems,

icons represent files; on others, icons represent
processes.

Menus Commands are selected from a menu rather than typed
in a command language.

Pointing A pointing device such as a mouse is used for selecting
choices from a menu or indicating items of interest in a
window.

Graphics Graphical elements can be mixed with text on the same
display.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 5

GUI advantages

 They are easy to learn and use.
• Users without experience can learn to use the system

quickly.

 The user may switch quickly from one task to
another and can interact with several different
applications.
• Information remains visible in its own window when

attention is switched.

 Fast, full-screen interaction is possible with
immediate access to anywhere on the screen

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 6

Design principles

 User familiarity
• The interface should be based on user-oriented

terms and concepts rather than computer concepts. For example, an
office system should use concepts such as letters, documents,
folders etc. rather than directories, file identifiers, etc.

 Consistency
• The system should display an appropriate level

of consistency. Commands and menus should have the same format,
command punctuation should be similar, etc.

 Minimal surprise
• If a command operates in a known way, the user should be

able to predict the operation of comparable commands

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 7

Design principles

 Recoverability
• The system should provide some resilience to

user errors and allow the user to recover from errors. This might
include an undo facility, confirmation of destructive actions, 'soft'
deletes, etc.

 User guidance
• Some user guidance such as help systems, on-line manuals, etc.

should be supplied

 User diversity
• Interaction facilities for different types of user should be supported.

For example, some users have seeing difficulties and so larger text
should be available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 8

User-system interaction

 Two problems must be addressed in interactive
systems design
• How should information from the user be provided to the

computer system?

• How should information from the computer system be
presented to the user?

 User interaction and information presentation
may be integrated through a coherent
framework such as a user interface metaphor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 9

Interaction styles

 Direct manipulation
 Menu selection
 Form fill-in
 Command language
 Natural language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 10

Control panel interface

Title

Method

Type

Selection

NODE LINKS FONT LABEL EDIT

JSD. example

JSD

Network

Process

Units

Reduce

cm

Full

OUIT

PRINT

Grid Busy

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 11

Menu systems

 Users make a selection from a list of
possibilities presented to them by the system

 The selection may be made by pointing and
clicking with a mouse, using cursor keys or by
typing the name of the selection

 May make use of simple-to-use terminals such
as touchscreens

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 12

Advantages of menu systems

 Users need not remember command names as
they are always presented with a list of valid
commands

 Typing effort is minimal
 User errors are trapped by the interface
 Context-dependent help can be provided. The

user’s context is indicated by the current menu
selection

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 13

Form-based interface

Title

Author

Publisher

Edition

Classification

Date of
purchase

ISBN

Price

Publication
date

Number of
copies

Loan
status

Order
status

NEW BOOK

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 14

Command interfaces

 User types commands to give instructions to the
system e.g. UNIX

 May be implemented using cheap terminals.
 Easy to process using compiler techniques
 Commands of arbitrary complexity can be

created by command combination
 Concise interfaces requiring minimal typing can

be created

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 15

Problems with command
interfaces

 Users have to learn and remember a command
language. Command interfaces are therefore
unsuitable for occasional users

 Users make errors in command. An error
detection and recovery system is required

 System interaction is through a keyboard so
typing ability is required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 16

Command languages

 Often preferred by experienced users because
they allow for faster interaction with the system

 Not suitable for casual or inexperienced users
 May be provided as an alternative to menu

commands (keyboard shortcuts). In some cases,
a command language interface and a menu-
based interface are supported at the same time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 17

Natural language interfaces

 The user types a command in a natural
language. Generally, the vocabulary is limited
and these systems are confined to specific
application domains (e.g. timetable enquiries)

 NL processing technology is now good enough
to make these interfaces effective for casual
users but experienced users find that they
require too much typing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 18

Multiple user interfaces

Operating system

GUI
manager

Graphical user
interface

Command
language

interpreter

Command
language
interface

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 19

Information presentation

Information to
be displayed

Presentation
software

Display

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 20

Model-view-controller

Model state

Model methods

Controller state

Controller methods

View state

View methods

User inputs
view modification

messages

Model editsModel queries
and updates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 21

Information presentation

 Static information
• Initialised at the beginning of a session. It does not change

during the session

• May be either numeric or textual

 Dynamic information
• Changes during a session and the changes must be

communicated to the system user

• May be either numeric or textual

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 22

Alternative information
presentations

0

1000

2000

3000

4000

Jan Feb Mar April May June

Jan
2842

Feb
2851

Mar
3164

April
2789

May
1273

June
2835

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 23

Analogue vs. digital presentation

 Digital presentation
• Compact - takes up little screen space

• Precise values can be communicated

 Analogue presentation
• Easier to get an 'at a glance' impression of a value

• Possible to show relative values

• Easier to see exceptional data values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 24

Dynamic information display

1

3

4 2
0 10 20

Dial with needle Pie chart Thermometer Horizontal bar

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 25

Displaying relative values

0 100 200 300 400 0 25 50 75 100

Pressure Temperature

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 26

Textual highlighting

The filename you have chosen has been
used. Please choose another name

Ch. 16 User interface design
!

OK Cancel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 27

Colour use guidelines

 Don't use too many colours
 Use colour coding to support use tasks
 Allow users to control colour coding
 Design for monochrome then add colour
 Use colour coding consistently
 Avoid colour pairings which clash
 Use colour change to show status change
 Be aware that colour displays are usually lower

resolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 28

Nurse input of a patient’s name

Please type the patient name in the box then click ok

Bates, J.

OK Cancel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 29

System and user-oriented error messages

Error #27

Invalid patient id entered?
OK Cancel

Patient J . Bates is not registered

Click on Patients f or a list of registered patients
Click on Retr y to re-input a patient name
Click on Help f or more information

Patients Help Retry Cancel

System-oriented error message
User-oriented error message

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 30

Help system design

 Help? means ‘help I want information”
 Help! means “HELP. I'm in trouble”
 Both of these requirements have to be taken

into account in help system design
 Different facilities in the help system may be

required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 31

Help system use

 Multiple entry points should be provided so that
the user can get into the help system from
different places.

 Some indication of where the user is positioned
in the help system is valuable.

 Facilities should be provided to allow the user
to navigate and traverse the help system.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 32

Entry points to a help system

Help frame network

Top-level
entry

Entry from error
message system

Entry from
application

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 33

Help system windows

Mail redirection

Mail may be redirected to another
network user by pressing the
redirect button in the control
panel. The system asks for the
name of the user or users to
whom the mail has been sent

next topicsmore

Mail redirection

Mail may be redirected to another
network user by pressing the
redirect button in the control
panel. The system asks for the
name of the user or users to
whom the mail has been sent

Help frame map

You are here

Help history

1. Mail
2. Send mail
3. Read mail
4. Redirection

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 34

Usability attributes

Attribute Description
Learnability How long does it take a new user to

become productive with the system?
Speed of operation How well does the system response match

the user’s work practice?
Robustness How tolerant is the system of user error?
Recoverability How good is the system at recovering from

user errors?
Adaptability How closely is the system tied to a single

model of work?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 35

Key points

 Interface design should be user-centred. An interface
should be logical and consistent and help users
recover from errors

 Interaction styles include direct manipulation, menu
systems form fill-in, command languages and natural
language

 Graphical displays should be used to present trends
and approximate values. Digital displays when
precision is required

 Colour should be used sparingly and consistently

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 36

Key points

 Systems should provide on-line help. This should
include “help, I’m in trouble” and “help, I want
information”

 Error messages should be positive rather than
negative.

 A range of different types of user documents
should be provided

 Ideally, a user interface should be evaluated
against a usability specification

	PowerPoint Presentation
	11.1 What is Project Management?
	What is Project Management?
	11.2 Software Process Models
	The waterfall model
	Slide 6
	Limitations of the waterfall model
	The phased-release model
	Slide 9
	The evolutionary model
	Slide 11
	The concurrent engineering model
	The concurrent engineering model
	Choosing a process model
	11.3 Cost estimation
	Principles of effective cost estimation
	11.4 Building Software Engineering Teams
	Software engineering teams
	Slide 19
	Slide 20
	Choosing an effective size for a team
	Skills needed on a team
	11.5 Project Scheduling and Tracking
	PERT charts
	Example of a PERT chart
	Gantt charts
	Example of a Gantt chart
	11.6 Contents of a Project Plan
	11.7 Difficulties and Risks in Project Management
	Difficulties and Risks in Project Management
	Slide 31
	Slide 32
	PowerPoint Presentation
	Project planning
	Types of project plan
	Project plan structure
	Activity organization
	Milestones in the RE process
	Project scheduling
	Scheduling problems
	Bar charts and activity networks
	Task durations and dependencies
	Activity network
	Staff allocation
	Risk identification
	Risks and risk types
	Key points
	Slide 16
	Requirements and Architecture
	Requirements in Context
	Terminology
	Functional Requirements
	Non-Functional Requirements
	Software Requirements Specification (SRS)
	Sample SRS Table of Contents
	Traceability
	Requirements Verification
	Requirements Validation
	Data Flow Models
	Use Case Models
	Architecture Design Phase
	Concluding Remarks
	6. Software Lifecycle Models
	Software Engineering Methods
	Heuristic Methods
	Formal Methods
	Prototyping Methods
	PowerPoint Presentation
	Slide 7
	6.3. What is a Lifecycle Model?
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Advantages
	Disadvantages I
	Disadvantages II
	Slide 17
	Disadvantages
	6.7. Rapid Prototyping
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Agile (XP) Manifesto
	6.8.1. Agile Principles (Summary)
	6.9. XP Practices (Summary)
	Slide 27
	Slide 28
	6.11. COTS
	Slide 30
	Introduction to UML
	What is UML?
	Models, Views, Diagrams
	UML Baseline
	Use Case Diagrams
	Actors
	Use Case
	Use Case Diagram: Example
	The <<extends>> Relationship
	The <<includes>> Relationship
	Use Cases are useful for…
	Class Diagrams
	Classes – Not Just for Code
	Instances
	UML Class Notation
	Binary Association
	Unary Association
	Aggregation
	Composition
	Inheritance
	UML Multiplicities
	UML Class Example
	Association Details
	Static vs. Dynamic Design
	Sequence Diagram Format
	Sequence Diagram : Timing
	Sequence Diagram Example
	Activity Diagrams
	Sample Activity Diagram
	Activity Diagram Example
	PowerPoint Presentation
	3. Structural Models
	Class Diagrams
	UML classes and association
	The Consultation Class (There are all kinds of classes: domain / entity classes; software classes, and many 'levels' of these!
	Generalization
	Slide 7
	Relationships: Generalization
	Example: Single Inheritance
	Example: Multiple Inheritance
	What Gets Inherited?
	Example: What Gets Inherited
	Object class aggregation models
	Relationships
	Relationships: Association
	Relationships: Aggregation
	Relationships: Composition
	Slide 18
	Key points
	4. Behavioral Models
	A. Data-driven Modeling
	An Activity Model of the insulin pump’s operation
	Order Processing – Sequence Diagram - behavorial
	B. Event-Driven Modeling
	State Machine Models
	Slide 26
	Slide 27
	PowerPoint Presentation
	User interface design
	Graphical user interfaces
	GUI characteristics
	GUI advantages
	Design principles
	Slide 7
	User-system interaction
	Interaction styles
	Control panel interface
	Menu systems
	Advantages of menu systems
	Form-based interface
	Command interfaces
	Problems with command interfaces
	Command languages
	Natural language interfaces
	Multiple user interfaces
	Information presentation
	Model-view-controller
	Slide 21
	Alternative information presentations
	Analogue vs. digital presentation
	Dynamic information display
	Displaying relative values
	Textual highlighting
	Colour use guidelines
	Nurse input of a patient’s name
	System and user-oriented error messages
	Help system design
	Help system use
	Entry points to a help system
	Help system windows
	Usability attributes
	Key points
	Slide 36

