Chaeter 1: Introduction

Operating System Concepts — 9™ Edit9on Silberschatz, Galvin and Gagne ©2013

r & Chapter 1: Introduction

What Operating Systems Do
Computer-System Organization
Computer-System Architecture
Operating-System Structure
Operating-System Operations
Process Management

Memory Management

Storage Management

Operating System Concepts — 9t Edition 1.2 Silberschatz, Galvin and Gagne ©2013

-

~

"y

«$F Objectives

®m To describe the basic organization of computer
systems

m To provide a grand tour of the major components of
operating systems

V.

A

Operating System Concepts — 9t Edition 1.3 Silberschatz, Galvin and Gagne ©2013

r & What is an Operating System?

m A program that acts as an intermediary between a user of a
computer and the computer hardware

m Operating system goals:

e Execute user programs and make solving user problems
easier

e Make the computer system convenient to use
e Use the computer hardware in an efficient manner

A0
Va

Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9" Edition 1.4

N

i
i

‘\'. t ’/

oy

Computer System Structure

m Computer system can be divided into four components:
e Hardware — provides basic computing resources
» CPU, memory, I/O devices
e Operating system

» Controls and coordinates use of hardware among various
applications and users

e Application programs — define the ways in which the system

resources are used to solve the computing problems of the
users

» Word processors, compilers, web browsers, database
systems, video games

e Users

» People, machines, other computers

S T
"\

A]
A»\ !

o

L A

Operating System Concepts — 9t Edition 1.5 Silberschatz, Galvin and Gagnhe ©2013

=

xg;‘;‘ ' Four Components of a Computer System

gy
!
- %

user user user user
1 2 3 e n
compiler assembler text editor e database
system

system and application programs

operating system

computer hardware

Operating System Concepts — 9t Edition 1.6 Silberschatz, Galvin and Gagne ©2013

™

p—

G Operating System Definition

B OS s aresource allocator
e Manages all resources

e Decides between conflicting requests for efficient and
fair resource use

m OSis a control program

e Controls execution of programs to prevent errors and
Improper use of the computer

Operating System Concepts — 9t Edition 1.7 Silberschatz, Galvin and Gagne ©2013

=
|

e N

55 ~ Operating System Definition (Cont.)

® No universally accepted definition

®m “The one program running at all times on the computer” is
the kernel.

m Everything else is either
e a system program (ships with the operating system) , or
e an application program.

£

N
o

%

S
¥

Operating System Concepts — 9t Edition 1.8 Silberschatz, Galvin and Gagne ©2013

p—

G Computer Startup

m Dbootstrap program is loaded at power-up or reboot

e Typically stored in ROM or EPROM, generally known
as firmware

e Initializes all aspects of system

e Loads operating system kernel and starts execution

Operating System Concepts — 9t Edition 1.9 Silberschatz, Galvin and Gagne ©2013

p— : :
=%/ Computer System Organization

m Computer-system operation

e One or more CPUs, device controllers connect through common
bus providing access to shared memory

e Concurrent execution of CPUs and devices competing for
memory cycles

mouse keyboard printer monitor

dISkS

[on-line '—\
L I
disk graphics
CPU coRtislcy USB controller adapter

b s Jaial e IS usb

memory

O SaY Sl 08 4gl (88 () g 25 o) Al e Jai sa Sl IS Sl Aalii) B .,»3;\\
MMQU\.\.\JL&J\J‘dmu‘dUASOJMUAOJMMJMAJh&MAG.“AAMJALLH

Operating System Concepts — 9t Edition 1.10 Silberschatz, Galvin and Gagne ©2013

&-f{;;?ﬁ “ Computer-System Operation

"4

: (sl e

m |/O devices and the CPU can execute concurrently
m Each device controller is in charge of a specific device S sy i
m Each device controller has a local buffer 48 ga ddsa 5 a5 810 o bl Ja
m CPU moves data from/to main memory to/from local buffers dj:}'ﬂﬁfi:“‘
u : : L.,

/O is from the device to local buffer of controller o dlie
B Device controller informs CPU that it has finished its Gy

operation by causing an interrupt
dadalia G Gl (335k 08 Aglaadl g a8 ATl gellaal) Slgad) 2N

Moy a g8 Jadil) aUAT (pa Uy g Lalaia) callali 5 alie JSy e85 5 L) ce 5 ke dalalial
Jan) dles dakilia o35 Alad) 038 (Jia B Jale Ll L) gliag da s Llee dlllia ol el
EEN]

£

A0

Y

Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9" Edition 1.11

o §

- _‘ >/

Common Functions of Interrupts

dadalial) da gaf JBLS
Interrupt transfers control to the interrupt service routine ™ Ofie) A

generally, through the interrupt vector, which contains the jlall 4s v

addresses of all the service routines ashy Aadaliall 4 laiu
Interrupt architecture must save the address of the - aady gl 1

88 yaas g dadalial)
o | S o clgaa Jalatl

A trap or exception is a software-generated interrupt ‘ qu‘ 14

caused either by an error or a user request ')

Interrupted instruction

An operating system is interrupt driven

Jatil) aURS ytiny UL Cailla) 5 Jaf cpa laad) o cilindatl) aaiad (Jahdal) dalas b

Operating System Concepts — 9" Edition 1.12

claklially Mia Lay

Silberschatz, Galvin and Gagne ©2013

&P Interrupt Handling

. A

die Mia diaay t&l\
. T 3 Sa o 4l

rocess ignal from A :
Execution user program C—)a.od\ 25 Joagll Resume Execution
5 Shall

User Mode
Enter the Leave the

kemel mode

kernel mode
oV Jsak ais
Ja¥ aga il
Z AN dallaa
leﬂ\ éﬂ\ KT C
oS! Aakilia yiny
& dalilia
dassa

Kernel Mode

AL

Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9" Edition 1.13

—

§F? Interrupt Handling

® The operating system preserves the state of the CPU by
storing registers and the program counter

m Determines which type of mterrupt has occurred:
A gl &3 A Alay Juu i] C\JAY\/J\AJY\ dakilia (1 Cra £ 48

e polling) Jgasll Jala Sgadl o) Al) judd z) AYYJRLY) dgal s aca
ool G il g e

e Vvectored Interrupt SyStem
DJMMAM L.A.Ua.uéahw\ ulh.\ Ls.ﬁ\ JL@A“ e\g&.ﬁ c‘\.@AJA.“ Ciladal8al) LA

i) llaall I ey S8 oo mllaal)) ald Say Jla)) Gaob o
PP AV ;bidg.; (113 é.ﬂ\ j\-ﬁi\ UJQ
B Separate segments of code determine what action should
be taken for each type of interrupt

Operating System Concepts — 9t Edition 1.14 Silberschatz, Galvin and Gagne ©2013

g7 Interrupt Timeline

CPU user
process
executing

I/O interrupt |—|
processing

I/0 idle

device _
transferring

/O transfer /O transfer
request done request done

Operating System Concepts — 9t Edition 1.15 Silberschatz, Galvin and Gagne ©2013

e

L Interrupt Timeline

CPU user
process
executing

I/O interrupt I—l
processing

I/O idle
device

transferring

I/O
request

transfer I/O transfer
done request done

Signal from i/o to the processor
to inform finishing data transfer

)

£ “
7 W
30

-~

Operating System Concepts — 9t Edition 1.16 Silberschatz, Galvin and Gagne ©2013

«’:_
|

Py,

5 /O Structure

m After I/O starts, control returns to user program only upon 1/O

D Ol 48
Complii Lo ullaty il g 1/0 cilides JlaS) gy addiional) gall Al 33 g2l) 1/0 JlaS) gllaad) Ui 1

Al dablfall cpad gllaal) Jland UK daglas
e Wait instruction idles the CPU until the next interrupt

e Wait loop (contention for memory access) (B8 (M g gll bl LAY Al
e At most one I/O request is outstanding at a time, no) .
simultaneous I/O processing G Ggtg aal g 1/0 el gllay Allad) oan 8

Dol Le ity Mag ¢ 1/0 UL ¢ 99 addiall geali g A JJuPSuS\ 1/0 e sy 22y 2
m After I/O starts, control returns to user program without waiting
for I/O completion

e System call — request to the OS to allow user to wait for
I/O completion

e Device-status table contains entry for each 1/0O device
indicating its type, address, and state

e OS indexes into I/O device table to determine device
status and to modify table entry to include interrupt

Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9" Edition 1.17

Storage Structure

® Main memory — only large storage media that the CPU can access
directly

e Random access
e Typically volatile

m Secondary storage — extension of main memory that provides large
nonvolatile storage capacity

®m Hard disks — rigid metal or glass platters covered with magnetic
recording material

e Disk surface is logically divided into tracks, which are subdivided into
sectors

e The disk controller determines the logical interaction between the device
and the computer

B Solid-state disks — faster than hard disks, nonvolatile
e Various technologies
e Becoming more popular

Operating System Concepts — 9t Edition 1.18 Silberschatz, Galvin and Gagne ©2013

Py,

- Storage Hierarchy

D 25 1alde) Laa ¢ Al Al
m Storage systems organized in hierarchy

e Speed
e Volatility
m Caching — copying information into faster storage system; CPU
main memory can be viewed as a cache for secondary Eash
storage
m Device Driver for each device controller to manage 1/O Main
_ _ _ Memory
e Provides uniform interface between controller and
kernel
Secondary
Memory

Operating System Concepts — 9t Edition 1.19 Silberschatz, Galvin and Gagne ©2013

\
|

=

Py : -
o Storage-Device Hierarchy

4
i v

main memory

4

i v

solid-state disk

.

o I
v

hard disk

H g

optical disk

A

magnetic tapes

Operating System Concepts — 9" Edition

1.20

Silberschatz, Galvin and Gagne ©2013

e & Caching

B |mportant principle, performed at many levels in a computer
(in hardware, operating system, software)

® Information in use copied from slower to faster storage
temporarily

m Faster storage (cache) checked first to determine if
information is there

e Ifitis, information used directly from the cache (fast)

e If not, data copied to cache and used there
m Cache smaller than storage being cached O Lapa 8 dyiiial 380
_ _ dia Cdd Al 5 SiAl)
e Cache management important design problem)

e Cache size and replacement policy

W
AP ‘

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.21

P

4%/ Direct Memory Access Structure

m Used for high-speed I/O devices able to transmit BSIA jdilsall J gua g1
information at close to memory speeds Gl J&5 Llas oa

Al gellaad) JAX (9
da)adind Aty La LIS
il (e il Jadl

AP S U BESERTEN

®m Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention

® Only one interrupt is generated per block, rather than
the one interrupt per byte

o ‘\\
¥ i\
"A»\ ‘\]

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.22

v}
4% How a Modern Computer Works

é o instruction execution —»
_ & % o instructions
thread of execution | g and
«—— data movement —»
data
CPU (*N)
‘ A I
35 s
-~ o =z DMA
[0) &
Kol — —
— O] (o
& = memory
A 4

N sl) seal) Ay ling o8 ¢ JUal) Jasas o
(A sdad) Jpasd) 8JS"3L;£ 45 3310 Glibal)) ¢ A gasasl]
AL A8 (lgudly ULl Aallae i L Lay oS0
LaS ¢ 438 pal) dadlaal) Ban g gl 3 S jdilsal) J gua ol
Aallaa g aUail) 3 803) O gaagl) 5228 clBldagd (iSay
A S pal) dalleal) Ban g) daladl (g0 il ga

W

A von Neumann architecture /w»

device
(*M)

-‘J.-

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.23

=$»7 Symmetric Multiprocessing Architecture

CPUq CPU; CPU»
registers registers registers
cache cache cache
memory
s
Operating System Concepts — 9t Edition 1.24 Silberschatz, Galvin and Gagne ©2013

S A Dual-Core Design

® Multi-chip and multicore
m Systems containing all chips
e Chassis containing multiple separate systems

CPU core, CPU corey
registers registers
[[
cache cache
memory

The more cores a CPU has, the more tasks it can perform
simultaneously. One core can perform one task at a time while other cores
handle other tasks the system assigns. This way, the overall performance is
substantially improved when compared to old single-core CPUs. X

Operating System Concepts — 9t Edition 1.25 Silberschatz, Galvin and Gagne ©2013

«?:_

—

Sy Operating System Structure

m Multiprogramming (Batch system) needed for efficiency
e Single user cannot keep CPU and I/O devices busy at all times

e Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

e A subset of total jobs in system is kept in memory
e One job selected and run via job scheduling
e When it has to wait (for I/O for example), OS switches to another job

B Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating

Interactive computing
e Response time should be < 1 second
e Each user has at least one program executing in memory = pProcess
e If several jobs ready to run at the same time = CPU scheduling
e If processes don’t fit in memory, Swapping moves them in and out to run

e Virtual memory allows execution of processes not completely in memory

P % ‘\\

£ p— \\!
)

'tz'f

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.26

=

~3»/ Memory Layout for Multiprogrammed System

Operating System Concepts — 9" Edition

512M

operating system

job 1

job 2

job 3

job 4

1.27

Silberschatz, Galvin and Gagne ©2013

~4%7 Operating-System Operations

®m Interrupt driven (hardware and software)
e Hardware interrupt by one of the devices

e Software interrupt (exception or trap):
» Software error (e.g., division by zero)
» Request for operating system service

» Other process problems include infinite loop, processes
modifying each other or the operating system

Operating System Concepts — 9t Edition 1.28 Silberschatz, Galvin and Gagne ©2013

=

"y

=$»7 Operating-System Operations (cont.)

m Dual-mode operation allows OS to protect itself and other system
components ,

e User mode and kernel mode user mode
e Mode bit provided by hardware (mode bit = 1)

» Provides ability to distinguish when system is running user
code or kernel code

» Some instructions designated as privileged, only kemel mode
executable in kernel mode (mode bit = 0) |

» System call changes mode to kernel, return from call resets| |
it to user '

® Increasingly CPUs support multi-mode operations
e i.e.virtual machine manager (VMM) mode for guest VMs

-

A0
Va

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.29

|

oy

«¢%> Transition from User to Kernel Mode

JJMA.“ L.i‘jl'\u‘
® Timer to prevent infinite loop / process hogging resources

e Timer is set to interrupt the computer after some time period
e Keep a counter that is decremented by the physical clock.

e Operating system set the counter (privileged instruction)

e When counter zero generate an interrupt

e Set up before scheduling process to regain control or terminate
program that exceeds allotted time

user process
user moqe
user process executing ——» calls system call return from system call (mode bit = 1)
\ 7
A 7
* Z
kernel trap return
=ine mode bit= 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
N N

,i:\
AP ‘

Operating System Concepts — 9t Edition 1.30 Silberschatz, Galvin and Gagne ©2013

R

"

- ﬂ".""w,}

Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-05 0.5-25 80-250 25,000-50,000 | 5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 |5,000- 10,000 | 1,000 - 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

Operating System Concepts — 9" Edition

131

Silberschatz, Galvin and Gagne ©2013

=

«g%’ Migration of data “A” from Disk to Register

o

m Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

hard A main
disk — memory
idad) <) gAl) g 3SIAN eladaifday i

® Multiprocessor environment must provide cache coherency in
hardware such that all CPUs have the most recent value in their

cache
m Distributed environment situation even more complex

hardware

cache .
register

e Several copies of a datum can exist
e Various solutions covered in Chapter 17

B

i

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 1.32

End of Chapter 1

Operating System Concepts — 9™ Edit9on Silberschatz, Galvin and Gagne ©2013

Chapter 2: Operating-System
Structures

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

H‘;:") Chapter 2: Operating-System Structures

y

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

System Boot

3 \‘\"

5 2)
o R
s <
7 WS

“ AR

Operating System Concepts — 9th Edition 2.2 Silberschatz, Galvin and Gagne ©2013

S5 Objectives

m Three views of an OS... each, respectively, focuses on
e The services it provides [Ser]
e The interface it makes available to users and programmers [Int]
e Its components and interconnections [Com]

®m To describe the services an operating system provides to users, processes, and
other systems

®m To discuss the various ways of structuring an operating system

N 'tIJ'o etxplaln how operating systems are installed and customized and how thq /}i\}
00 WS

A

Operating System Concepts — 9th Edition 2.3 Silberschatz, Galvin and Gagne ©2013

(ou ‘ [Ser] Operating System Services
r o (helpful to the user)

m Operating systems provide an environment for execution of programs and services to
programs and users

® One set of operating-system services provides functions that are helpful to the user:
e User interface - Almost all operating systems have a user interface (Ul).

» Varies between

Command-Line Interface (CLI): text commands and method for entering them

Graphics User Interface (GUI): window system
Batch Interface (Bl): commands and directives are in makefiles

e Program execution - The system must be able to load a program into memory and to
run that program, end execution, either normally or abnormally (indicating error)

e |/O operations - A running program may require I/O, which may involve a file or afi -
I/O device et Y X

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 2.4

(o ' [Ser] Operating System Services
0 (helpful to the user)

e File-system manipulation - The file system is of particular interest. Programs need to
read and write files and directories, create and delete them, search them, list file
Information, permission management.

e Communications — Processes may exchange information, on the same computer or
between computers over a network

» Communications may be via shared memory or through message passing (packets
moved by the OS)

e Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user program

» For each type of error, OS should take the appropriate action to ensure correct and
consistent computing

» Debugging facilities can greatly enhance the user’ s and programmer’ s abilities to-
efficiently use the system

\!

(74 &;’(/

A

Operating System Concepts — 9t Edition 2.5 Silberschatz, Galvin and Gagne ©2013

-

N

. [Ser] Operating System Services

e
(A i '
w & (for efficient operation of the OS)

B Another set of OS functions exists for ensuring the efficient operation of the system itself
via resource sharing

e Resource allocation - When multiple users or multiple jobs running concurrently,
resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file storage, I/O devices.

e Accounting - To keep track of which users use how much and what kinds of computer
resources

e Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information, concurrent
processes should not interfere with each other

» Protection involves ensuring that all access to system resources is controlled

» Security of the system from outsiders requires user authentication, extends tog~ '\

defending external I/0O devices from invalid access attempts — /'3,%&3‘

A

Operating System Concepts — 9t Edition 2.6 Silberschatz, Galvin and Gagne ©2013

- N

‘r{:ﬁ \[Ser] A View of Operating System Services

user and other system programs

GUI batch command line
user interfaces
system calls
progie! e fi communication ROl accounting
execution operations systems allocation
error pro;?]c(;jnon
detection | security
services

operating system

hardware

Silberschatz, Galvin and Gagne ©201

Operating System Concepts — 9t" Edition 2.7

4
#

o .
g [Ser] Command-Line Interface - CLI

y

CLI or command interpreter allows direct command entry

e Sometimes implemented in kernel, sometimes by systems program (e.g.,
Windows XP, UNIX)

e Multiple CLIs in one system = shells
» Bourne, C, Bash, or Korn shells,... etc in UNIX/Linux OS systems

e Function of CLI: fetches a command from user and executes it

» Sometimes commands built into the CLI
Larger shells

» Sometimes just names of system programs. Ex: rm file.txt in UNIX 2N

e ¢ 2). ‘\{
Smaller shells. Adding new features doesn’t require shell modification -
Operating System Concepts — 9t Edition 2.8 Silberschatz, Galvin and Gagne ©2013

)—r [Ser] Bourne Shell Command Interpreter

A\

Default
T "y |'
-i 0 @ (S
Info Clnse Execute Bookmarks
e R
PBEG-Mac-Pro:~ pbg} w
15:24 up 56 mins, 2 users, load averoges: 1.51 1.53 1.65
USER TTY FROM LOGINE TIDLE WHAT
pbg console - 14:34 50 -
pbg sQ0a - 15:85 - W
PBG-Moc-Pro:~ pbg} iostat 5
diskd diskl diskl@ cpu load average

KB/t tps MB/s KB/t tps MB/s KB/t tps MBSs us sy id Im S5m 15m

33.75 343 11.3@ 64.31 14 @.88 30.67 9@ 9.2 11 5 84 1.51 1.53 1.65

5.27 320 1.65 2.00 @ 0.00 0.00 @ 0.80 4 204 1.39 1.51 1.65

4,28 329 1.37 .00 @ 0.00 0.0 @ 0.88 5 392 1.44 1.51 1.65
AL
PEG-Mac-Pro:~ pbg$ 1s
Applications Music WebEx
Applications (Parallels) Pando Packages config.log
Desktop Pictures getsmartdata. txt
Documents Public imp
Downloads Sites log
Dropbox Thumbs . db panda-dist
Library Virtual Machines prob.txt
Movies Volumes scripts
PBG-Mac-Pro:~ pbg} pwd
fUsers/pbg

PBEG-Mac-Pro:~ pbg% ping 192.168.

PING 192.168.1.1 (192.168.1.1):
64 bytes from 192.168.1.1:
64 bytes from 192.168.1.1:
AC

--- 182.168.1.1 ping statistics

1.1
56 data bytes

icmp_seq=0 ttl=64 time=2.257 ms
icmp_seq=1 ttl=64 time=1.262 ms

2 packets transmitted, 2 packets received, @.0% packet loss

round-trip minfovg/mox/stddev = 1.262/1.760/2.257/0.498 ms

PBEG-Mac-Pro:~ pbg$ []

Operating System Concepts — 9t" Edition

2.9

A R
Silberschatz, Galvin and Gagne ©2013

|
p—
5

o [Ser] Graphical User Interface - GUI

B User-friendly desktop metaphor interface

e Usually mouse, keyboard, and monitor
e |cons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause various actions
(provide information, options, execute function, open directory (known as a

folder)
e |nvented at Xerox PARC

B Many systems now include both CLI and GUI interfaces

e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath and
shells available

e Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GN E)j,;wx“

Silberschatz, Galvin and Gagr:(; ©20§3

Operating System Concepts — 9t" Edition 2.10

[Ser] Touchscreen Interfaces

m Touchscreen devices require new
interfaces

e Mouse not possible or not desired

e Actions and selection based on
gestures

e Virtual keyboard for text entry

® \oice commands.

Operating System Concepts — 9t" Edition 2.11

Silberschatz, Galvin and Gagne ©2013

[Ser] The Mac OS X GUI

r

@ Grab File Edit [ETETEN window Help L Ay e S W D F DS A 4 1506EDTMan 2l 2 K @
¥ fig-di L
s o B Q T ecaon = e 7|
i-ap SEack > M+ Favwiitess Documantse [fusice Moviesw Datktone Apaolicationse ZPEGe ZPRGE« Diske o
& 063 10udaride | Cestiog. @ | © to-dic | = o ibtiadsladi Bt =
i . toak) v
4 + Knd Dote Modified Size Applicatian
e =] o FOF €124/07, 1,05\ 106 LB Skm
8 Netwark
a Fn.'::m Steipe . © o TTRE Iakscane
= A v O Fortab e Netasik Crazhizs | mage 39258 Fredsw =
2\ Maciniash HD - O s 14348 Ikscape V
2 Unitled v DT B3 1B Fraew .
i Untitled 2 1
o 2086 s
) 2P8GE S TIFF
£ ibisk &
* Pster Baor Galv s iPod B
Previen Hon
= for
i Mo 20 '
A Apalications Kind: TIFF Cozument U R e
[Douments UT# sutkenif
URL: i)
J\ :IIMIS CALYVENT PBCOBLACSS . N
ties 12PEG
(3 ma Size: 3810 K 901,236 bytes AP o ki
data 901,236 byle
1 Deshiop Frsical. £81 KE (9
v Favori o
’ ’2""‘ s . Modifiec: Toiay. 2:23PM ST
S Aunbutest Todap 2:53PM s P
1§ Vovies TR Aty > L0 P Owneti 3b3 (104 CHMRSTChfrle
S Ag-z0n v hg-20a Croup: i1 (E0)
el 5 fg-die Permission: rw- - (700 n
I Sites Fathi Vold mes [2P3G- L firp/ L
W Public | ass-dir sozk/osk-cin, -4 1! Jo il Drop Ro
7 ook 3g-2.2a1it
|/ Prefercnces Applization: ev e
¥ Ubrary L7 irep Valume: 2PRC
e o 2PEG Capacity: 7354 CB (03]
Frae: 7143 Ch L
| projerts ' Fermal Nevadi bE Y
| consult s Mount Point: /\ali iz 2P3G- 1
1 [C]5unems 10 & tervs selected - 7343 G avelazle. 5.1 G3 use:

| Address Book

Qapzle)

Nema
I Aople Computer In vr‘.i
1 Aaple Computer In

=
T Lasz Import |

homs

[WETH]

Apple Computer Inc.

main 1-802-MY-APPLE
alier 800-275-2373

o hitp:fivmay.appe.co™
work 1 infhivite _oop

C.pert no CA 95014
United S:ztes

2ound

Operating System Concepts — 9t" Edition 2.12

Solaris 10 al as

Dictianary and Thesaurus
Q, aperating system

opeereatsing sysetem

ram

the wftwine o1 supports a computer s bese finetions,
such as s beculi ting applic o tons, ar:d

contralling perij

(PR tinumn) dmry

Silberschatz, Galvin and Gagne ©2013

4
#

> [Int] System Calls

~EN

‘ /__,/:. 0 /
P &
W
-\

® Provide programming interface to the services made available by the OS

m Typically written in a high-level language (C or C++)
e With hardware-level tasks written in assembly language

m Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use

e API specifies set of functions available to the programmer
» Example :functions ReadFile() or CreateProcess() in WIN32 API
» Functions invoke the actual system calls on behalf of the programmer
Function CreateProcess() invokes system call NTCreateProcess()
Why not invoke actual system call (instead of using API) ? Because:
» Program portability: compile/run on systems supporting same API

® Three most common APIs are

e Win32 API for Windows
e POSIX API for UNIX, Linux, and Mac OS X)

e Java API for the Java virtual machine (JVM)

Al
L "x& &l
S \\\)

Note that the system-call names used throughout this text are generic ./ %
2.13 Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition

i
= s

"’d [Int] Example of System Calls

m System call sequence to copy the contents of one file to another file

source file

>

destination file

Operating System Concepts — 9t" Edition

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

~

4

2.14

Silberschatz, Galvin and Gagne ©2013

=¥/ [Int] Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t¢ read(int fd, woid *buf, size_t count)
I | | | | |

return function parameters

value name

A program that uses the read () function must include the unistd.h header

file, as this file defines the ssize t and size_t data types (among other
things). The parameters passed to read () are as follows:

* int fd—the file descriptor to be read
* void *buf —a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

R

A A
Operating System Concepts — 9t Edition 2.15 Silberschatz, Galvin and Gagne ©2013

m.l

r & [Int] System Call Implementation

m Typically, a number is associated with each system call
e System-call interface maintains a table indexed according to these numbers

m The system call interface invokes the intended system call in OS kernel and
returns status of the system call and any return values

® The caller need know nothing about how the system call is implemented
e Just needs to obey API and understand what OS will do as a result call
e Most details of OS interface hidden from programmer by API

» System-call interface is managed by run-time support library (set of =,
functions built into libraries included with compiler) | /},‘1

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 2.16

‘«é;ﬂilnt] APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
> open ()
Implementation
i » of open ()
o system call
return

Operating System Concepts — 9th Edition 2.17 Silberschatz, Galvin and Gagne ©2013

<

r o ‘[Int] System Call Parameter Passing

m Often, more information is required than simply identity of desired system call

e Exact type and amount of information vary according to OS and system call

m Three general methods used to pass parameters to the OS
(discussed in 03-60-266)
e Simplest. pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the runtime stack by the program and
popped off the stack by the operating system

e Block and stack methods are preferred... do not limit the number or |

parameters being passed _ _
Operating System Concepts — 9t Edition 2.18 Silberschatz, Galvin and Gagne ©2013

~u{$§ [Int] Parameter Passing via Table

— X

register

X: parameters
for call

— ™ use parameters code for
load address X / from table X system
-

system call 13 call 13

user program

operating system

Operating System Concepts — 9th Edition 2.19 Silberschatz, Galvin and Gagne ©2013

(T [Int] Types of System Calls
" (Process Control)

B Process control

» Program should be able to start, control, and end or abort its execution

e create process, terminate process

e end, abort

e |oad, execute

e (et process attributes, set process attributes

e wait for time

e wait event, signal event

e allocate and free memory

e Dump memory if error

e Debugger for determining bugs, single step execution

e Locks for managing access to shared data between processes

Operating System Concepts — 9t Edition 2.20 Silberschatz, Galvin and Gagne ©2013

xmt] Process Control Example: MS-DOS

m Single-tasking

m Shell invoked when system booted free memory

® Simple method to run program free memory

process

e No process created

command
® Single memory space interpreter command
Interpreter
kernel kernel
® Loads program into memory, .
overwriting all but the kernel @) (b)
At system startup running a program

® Program exit -> shell reloaded

Operating System Concepts — 9t Edition 2.21 Silberschatz, Galvin and Gagne ©2013

t,[Iﬁt] Process Control Example: FreeBSD

Unix variant

Multitasking

User login -> invoke user’ s choice of shell

Shell executes fork() system call to create
process

e Executes exec() to load program into
process

e Shell walits for process to terminate or
continues with user commands

Process exits with:
e code =0-no error
e code >0 — error code

Operating System Concepts — 9t" Edition 2.22

process D

free memory

process C

interpreter

process B

kernel

o - ~ ti\ \ \
£ /%‘ﬁ’) /.
y “';

5
“ AR

Silberschatz, Galvin and Gagne ©2013

P [Int] Types of System Calls
"3" (File Management and Device Management)

®m File (and directory) management

e create file, delete file

e open, close file

e read, write, reposition

e get and set file attributes

m Device management
» Process needs several resources to execute
» Resources = Devices = memory, disk drives, files, ... etc, controlled by OS
e request device, release device
e read, write, reposition
e get device attributes, set device attributes

e |ogically attach or detach devices

\ \
AN
S ‘& :
W<
A AT

Operating System Concepts — 9t Edition 2.23 Silberschatz, Galvin and Gagne ©2013

I [Int] Types of System Calls
‘\“ffx,"’;;’(lnformation Maintenance and Communications)

®m [nformation maintenance
» All kinds of statistics and data that can be requested
Nb of users, size of free memory, OS version number, disk space, etc
e get time or date, set time or date
e get system data, set system data
e get and set process, file, or device attributes

B Communications
e create, delete communication connection

e send, receive messages if message passing model to host name or
process name

» From client to server
e Shared-memory model create and gain access to memory regions
e transfer status information

e attach and detach remote devices

\'\\\ \\\
o |
y 4
i ‘\T ’
A X

Operating System Concepts — 9t Edition 2.24 Silberschatz, Galvin and Gagne ©2013

™ [Int] Types of System Calls
““%)" (Protection)

B Protection

e Control access to resources

e Get and set permissions

e Allow and deny user access

Operating System Concepts — 9t Edition 2.25 Silberschatz, Galvin and Gagne ©2013

w@»7 [Int] Examples of Windows and Unix System Calls

Process
Control

File

Manipulation

Device

Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 9t" Edition

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

2.26

Unix

fork()
exit()
wait ()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe)
shmget ()
mmap ()

chmod ()
umask ()
chown()

Silberschatz, Galvin and Gagne ©2013

&f«g;g*/[lnt] Standard C Library Example

m C program invoking printf() library call, which calls write() system call

e The standard C library provides portion of system-call interface for
many versions of UNIX and Linux

#include <stdio.h>
int main (}

return 0;
}

user
mode ¥

standard C library —
kernel
mode

write ()
write ()
system call

Operating System Concepts — 9th Edition 2.27 Silberschatz, Galvin and Gagne ©2013

=

.

57 [Int] System Programs

m System programs (or, system utilities) provide a convenient environment for
program development and execution.

e Some are user interfaces to system calls, others are very complex
» E.g., browsers, formatters, assemblers, debuggers, defragmenters... etc

® They can be divided into:

e File manipulation

e Status information sometimes stored in a File modification

e Programming language support

e Program loading and execution

e Communications

e Background services

e Application programs

B Most users’ view of the operation system is defined by system programs, notthe™

actual system calls = ;\\?»}

X

Operating System Concepts — 9t Edition 2.28 Silberschatz, Galvin and Gagne ©2013

G5 [Int] System Programs

user user user user
1 2 3 Tt n
compiler assembler text editor e database
system

system and application programs

operating system

computer hardware

Operating System Concepts — 9t Edition 1.29 Silberschatz, Galvin and Gagne ©2013

557 [Int] System Programs

® Provide a convenient environment for program development and
execution

e Some of them are simply user interfaces to system calls; others
are considerably more complex

® File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

B Status information

e Some ask the system for info - date, time, amount of available
memory, disk space, number of users

e Others provide detailed performance, logging, and debugging
information

e Typically, these programs format and print the output to the
terminal or other output devices

e Some systems implement a registry - used to store and
retrieve configuration information

S\

<A

Operating System Concepts — 9t Edition 2.30 Silberschatz, Galvin and Gagne ©2013

o
TR
> nﬂ.‘““h-&

g [Int] System Programs

m File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform transformations of
the text

B Programming-language support - Compilers, assemblers, debuggers and
Interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable loaders, linkage
editors, and overlay-loaders, debugging systems for higher-level and machine
language

®m Communications - Provide the mechanism for creating virtual connections
among processes, users, and computer systems

e Allow users to send messages to one another’ s screens, browse web pages,
send electronic-mail messages, log in remotely, transfer files from one
machine to another /.%)

;2_ .,\;1

<A

Operating System Concepts — 9t Edition 2.31 Silberschatz, Galvin and Gagne ©2013

=

N
m_m.&

57 [Int] System Programs

m Background Services

e Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

e Provide facilities like disk checking, process scheduling, error
logging, printing

e Run in user context not kernel context

e Known as services, subsystems, daemons

m Application programs

e Don't pertain to system

e Run by users

e Not typically considered part of OS; but user think they are
e Launched by command line, mouse click, finger poke

Operating System Concepts — 9t Edition 232 Silberschatz, Galvin and Gagne ©2013

L N

&g'x-'—“} fCom] Operating System Structure

m General-purpose OS is very large program
» Hence, OS must be engineered intelligently for easy use and modification

e OS design: partition into modules and define interconnections

® Various ways to structure ones

e Simple structure — MS-DOS: Monolithic, small kernel, not well separated
modules, no protection, limited by Intel 8088 hardware

e More complex -- original UNIX: Monolithic, large kernel, two-layered UNIX
(separates kernel and system programs), initially limited by hardware

e Layered — an abstraction: Modular OS, freedom to change/add modules

e Microkernel — Mach: Modularized the expanded but large UNIX, keeps only
essential component as system-level or user-level programs, smaller ker
and easy to extend

\ \‘
SR
W&
A

Operating System Concepts — 9t Edition 2.33 Silberschatz, Galvin and Gagne ©2013

«§%7[Com] Simple Structure -- MS-DOS

e\,

®m MS-DOS — written to provide the most

functionality in the least space
application program
e Not divided into modules

resident system program

e Although MS-DOS has some
structure, its interfaces and levels of
functionality are not well separated

MS-DOS device drivers

» E.g., App’s can write directly to
the display and disk drives

ROM BIOS device drivers ’
» Intel 8088 processor had no

dual mode

Vulnerable

AN

NoO protection

V-

A

Operating System Concepts — 9t Edition 2.34 Silberschatz, Galvin and Gagne ©2013

=

N

- ml

~§»7 [Com] Non Simple Structure -- UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

e Systems programs
e The kernel

» Consists of everything below the system-call interface
and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Very large kernel £S5 \

)
S’
%
N

Ay

Operating System Concepts - 9t Edition 2.35 Silberschatz, Galvin and Gagne ©2013

a«—;;f‘(‘\:om] Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

kernel interface to the hardware

- signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
& character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts — 9t" Edition 2.36

. A\ \'\
~ 2 3\
" — 2l
y <
7 WS
“l X

Silberschatz, Galvin and Gagne ©2013

-

- [Com] Layered Approach

® The operating system is divided into a
number of layers (levels), each built on top
of lower layers. The bottom layer (layer
0), is the hardware; the highest (layer N) is
the user interface.

layer N
user interface

® With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

layer O
hardware

m Advantage: each layer is
e Abstraction: data + operations on data
e Simple to construct
e Easy to debug and verify

m Problems:
e defining the various layers,
e less efficient than non-layered OS

. A\ \'\
> 2 3\
— al
s <
7 WS
“ POV

Operating System Concepts — 9th Edition 2.37 Silberschatz, Galvin and Gagne ©2013

‘wwf [Com] Microkernel System Structure

B Moves as much from the kernel into user space, hence, a small kernel
e Kernel provides : process and memory management, and inter-process comm
e All non-essential components are either user or system programs

m Mach example of microkernel
e Mac OS X kernel (Darwin) partly based on Mach

®m Communication takes place between user modules using message passing

e Function of microkernel: communication between client program and services
m Benefits:

e Easier to extend a microkernel

e Easier to port the operating system to new architectures

e More reliable (less code is running in kernel mode)

e More secure

m Detriments:

e Performance overhead of user space to kernel space communication \
Operating System Concepts — 9t Edition 2.38 Silberschatz, Galvin and Gagne ©2013

=

<$»1Com] Microkernel System Structure
Application File Device user
Program System Driver mode

CPU
scheduling

memory
managment

kernel
mode

Interprocess
Communication

A microkernel 4

hardware

Operating System Concepts — 9t Edition 2.39 Silberschatz, Galvin and Gagne ©2013

4
#

_—

\

M,,,.-/ [Com] Modules

® Many modern operating systems implement loadable kernel modules
» Kernel provides core services

» Similar to microkernel
e Uses object-oriented approach

e Each core component is separate

e Each talks to the others over known interfaces

e Each is loadable as needed within the kernel

m Overall, similar to layers but with more flexibility

e Each kernel module is abstract but can call any other module
e Linux, Solaris, ... etc

Operating System Concepts — 9t Edition 2.40 Silberschatz, Galvin and Gagne ©2013

=

p—y

"“‘*»"’ [Com] Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel loadable

miscellaneous
modules

system calls

executable
formats

STREAMS
modules

Operating System Concepts — 9t Edition 2.41 Silberschatz, Galvin and Gagne ©2013

=™

N

= fm..\

P [Com] Hybrid Systems

® Most modern operating systems are actually not one pure model

e Hybrid combines multiple approaches to address performance, security,
usability needs

e Linux and Solaris kernels are monolithic, plus modular for dynamic loading of
functionality

e Windows mostly monolithic, plus microkernel for different subsystem
personalities

m Mac OS X is hybrid, layered with Aqua Ul plus Cocoa API
e Below is kernel consisting of Mach microkernel and BSD Unix parts, plus 1/

kit and dynamically loadable modules (called kernel extensions) /-»\‘1
I B

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 2.42

557 [Com] Mac OS X Structure

raphical user interface
grap Aqua

application environments and services

kernel environment

BSD

Mach

I/0O kit kernel extensions

£ - = TS\ ‘)
,v%}:\\/
TN
4 ‘V‘
A A%

Operating System Concepts — 9t Edition 2.43 Silberschatz, Galvin and Gagne ©2013

10S

m Apple mobile OS for iPhone, iPad

Structured on Mac OS X, added functionality

Does not run OS X applications natively

» Also runs on different CPU architecture
(ARM vs. Intel)

Cocoa Touch Objective-C API for
developing apps

Media services layer for graphics, audio,
video

Core services provides cloud computing,
databases

Core operating system, based on Mac OS X
kernel

Operating System Concepts — 9t" Edition 2.44

Cocoa Touch

Media Services

Core Services

Core OS

& - =35 ‘)
> vﬂ‘ﬁ;‘ ‘\\/
TN
4 <

2 ‘: 3

Silberschatz, Galvin and Gagne ©2013

)
& -ré_

557 Android

m Developed by Open Handset Alliance (mostly Google)
e Open Source

m Similar stack to 10S

m Based on Linux kernel but modified
e Provides process, memory, device-driver management
e Adds power management

B Runtime environment includes core set of libraries and Dalvik virtual machine
e Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated to executable
than runs in Dalvik VM

m Libraries include frameworks for web browser (webkit), database (SQLite),
multimedia, smaller libc

S\
(74 &;’(/

A

e

Operating System Concepts — 9t Edition 2.45 Silberschatz, Galvin and Gagne ©2013

-

S5 Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
rﬁu:acgr frarrnneec\ll:/?)rk Dl
anag virtual machine
webkit libc

=8 .,\;1

<A

e e Al
/‘7%

Operating System Concepts — 9t Edition 2.46 Silberschatz, Galvin and Gagne ©2013

End of Chapter 2

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

A‘)
V4

kx“’;ﬁ Operating System Design Goals

m Design and Implementation of OS not “solvable”, but some
approaches have proven successful

®m Internal structure of different Operating Systems can vary widely
m Start the design by defining goals and specifications

m Affected by choice of hardware, type of system

m User goals and System goals

e User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

e System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient il

174 % A

A

g’
W
\

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 2.48

) Operating System Mechanisms and Policies

® [mportant principle to separate

Policy: What will be done?

Mechanism: How to do it?

® Mechanisms determine how to do something, policies decide
what will be done

® The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example — timer)

m Specifying and designing an OS is highly creative task of
software engineering

Operating System Concepts — 9t Edition 2.49 Silberschatz, Galvin and Gagne ©2013

=

N
m_m.&

Lt Operating System Implementation

® Much variation
e Early OSes in assembly language
e Then system programming languages like Algol, PL/1
e Now C, C++

m Actually usually a mix of languages
e Lowest levels in assembly
e Main body in C

e Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

® More high-level language easier to port to other hardware
e But slower

B Emulation can allow an OS to run on non-native hardware

Operating System Concepts - 9t Edition 2.50 Silberschatz, Galvin and Gagne ©2013

k%mu

& Operating-System Debugging

B Debugging is finding and fixing errors, or bugs

B OS generate log files containing error information

m Failure of an application can generate core dump file capturing memory of the
process

m Operating system failure can generate crash dump file containing kernel memory
B Beyond crashes, performance tuning can optimize system performance

e Sometimes using trace listings of activities, recorded for analysis
e Profiling is periodic sampling of instruction pointer to look for statistical trends

Kernighan’ s Law: “Debugging is twice as hard as writing the code in the first places
Therefore, if you write the code as cleverly as possible, you are, by definition /HQI; S|

smart enough to debug it.”
Operating System Concepts — 9t Edition 2,51 Silberschatz, Galvin and Gagne ©2013

(P Performance Tuning

® Improve performance by EINindbws Task Manager X
removing bottlenecks Fie Options Yiew Help

CPU Usage CPU Usage Hisbor

® OS must provide means of
computing and displaying

meaSU reS Of SySte m PF Usage Page File Usage History
“ ” Takals Physical Memory (k)
m For example, “top” program Handles 12621 Total 2096616
. Threads 563 Ao ailable 13915852
or Windows Task Manager Processes 50 System Cache 1564184
Commit Charge (k) Kermel Memory (K)
Tokal 642128 Total 1158724
Lirnik 4036760 Paged 55636
Peak 01216 Monpaged 33035
Processes; S0 CPU Usage: 0% Carnmit Charge: 627M [3942

o - ~ ti\ \ \
£ /%‘ﬁ’) /.
y “';

5
“ AR

Operating System Concepts - 9t Edition 2.52 Silberschatz, Galvin and Gagne ©2013

- DTrace
./all.d ‘pgrep xclock' XEventsQueued
m DTrace tool in Solaris, dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
FreeBSD, Mac OS X allows 0 _> XEventsoueued U
live instrumentation on 0 -> _XEventsQueued v
] 0 -> XllTransBytesReadable U
prOdUCtIOn SyStemS 0 <— XllTransBytesReadable u
0 -»> XllTransSocketBytesReadable U
0 <— XllTransSocketBytesreadable U
_ _ 0 -> loctl U
m Probes fire when code Is 0 -» doctl K
ey - . 0 -= getf K
executed within a provider, 0 _> set active fd K
i 0 <- set_ active fd K
captu_rlng state data and ; ners - .
Sendlng it to consumers of 0 -> get udatamodel K
those prObeS 0 <— get udatamodel K
O -> releasef K
0 -> clear active fd K
m Example of following o <~ clear_active fd K
0 -> cv_broadcast K
XEventsQueued system call 0 <- ov_broadcast K
: : 0 <- releasef K
move from libc library to o S v
kernel and back 0 <= ioctl U
0 <— _XEventsQueued U
0 =«- XEventsQueued u

Operating System Concepts — 9t Edition 2.53 Silberschatz, Galvin and Gagne ©2013

o
Y,

' ,«‘<‘F""".~l
7 Dtrace (Cont.)
m DTrace code to record
amount of time each # dtrace -s sched.d
process with UserID 101 is ndérace: script ‘sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
: gnome-vfs-daemon 158243
in nanoseconds i 180802
wnck-applet 200030
sched: : : op=Cow gnome-panel 277864
3 o 101 P clock-applet 374916
?l - mapping-daemon 385475
self->ts = timestamp; maxeepsaver 514177
} metacity 539281
Xorg 2579646
sched: : :of f-cpu gnome-terminal 5007269
self->ts mixer applet2 7388447
java 10769137

@time [execname] = sum(timestamp - self->ts);

self->ts = 0; Figure 221 Output of the D code.

}

Operating System Concepts — 9th Edition 2.54 Silberschatz, Galvin and Gagne ©2013

=

ﬂmﬁ : - i
o Operating System Generation

B Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

B SYSGEN program obtains information concerning the specific
configuration of the hardware system

e Used to build system-specific compiled kernel or system-
tuned

e Can general more efficient code than one general kernel

Operating System Concepts — 9t Edition 2.55 Silberschatz, Galvin and Gagne ©2013

=

N

(e

<557 System Boot

® When power initialized on system, execution starts at a fixed memory location

e Firmware ROM used to hold initial boot code

m Operating system must be made available to hardware so hardware can start it

e Small piece of code — bootstrap loader, stored in ROM or EEPROM locates
the kernel, loads it into memory, and starts it

e Sometimes two-step process where boot block at fixed location loaded by
ROM code, which loads bootstrap loader from disk

m Common bootstrap loader, GRUB, allows selection of kernel from multiple disks,
versions, kernel options

/"},;ﬁ |
m Kernel loads and system is then running Ve
Operating System Concepts — 9t Edition 2.56 Silberschatz, Galvin and Gagne ©2013

Chapter 3: Processes

A

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

G Process Concept iglaell sgasa

B An operating system executes a variety of programs:

de gila gmal o Judall olas 263, m
e Batch system — jobs il gl and — Amda Uk al y Ll
e Time-shared systems — user programs or tasks aleall s aasudiall mal j Jie — (e) A4S jLiia el o)

m Textbook uses the terms job and process almost interchangeably <lileall 5 cailla gl) mllaias Lgile 3l sl
B Process —a program in execution; process execution must progress in sequential fashion
B Alalide) gean 055 O ang Aplaal) 285 5 28T Al 8 mall g (o8 — Ayl
m Multiple parts (2 s el al B e dlead) (5SS
e The program code, also called text section oaill ahaia o5 el jull &l eyl o) ol il

e Current activity including program counter, processor registers s gt slae Jald 5 aallal) culdalisll
llaall i laise

e Stack containing temporary data A 5all bl e (5 sing (uaSall

v

Function parameters, return addresses, local variables Zalas &l jaia 33 sall o) sie | cailla 5l Cilalaa Jia
e Data section containing global variables 4sle < yia (5 giny UL adaia

e Heap containing memory dynamically allocated during run time sl aaall s a8 sally 50353 SIS g 40 <)
GAUJ._J‘ K¥EEYS

Operating System Concepts — 9t Edition 3.2 Silberschatz, Galvin and Gagne ©2013

=

-

PN
“GF7 Process Concept (Cont.)

® Program is passive entity stored on disk (executable file), process is active
B LS 2 ddead) Lain a5l (55 33 Jald LS 52 el il
e Program becomes process when executable file loaded into memory
o AU 5 SIAN) o3l Calal) Jpeat o5 Ladie dglee I U ay geald)

m Execution of program started via GUI mouse clicks, command line entry of its
name, etc

B b ol b Caldl and JA) 5 aadieall o gy dgal g 3 ol sall dide il e zali) 2 lay
el Y1
® One program can be several processes — <llas i algaal g el o 58 O S

e Consider multiple users executing the same program (s34 (yediiue bac Sl
gl) i

e —

Operating System Concepts — 9t Edition 3.3 Silberschatz, Galvin and Gagne ©2013

&“’%)" Process in Memory 5813 (& dalasl) a
max
stack EYECOA|

Operating System Concepts — 9t" Edition

heap

data

text

3.4

5 S
ia 1)

Silberschatz, Galvin and Gagne ©2013

‘r;;w Process State igaell ¥y

B As a process executes, it changes state <¥la 3y Lidii o) Llaad)
RS

e new: The process is being created dleal) L&l ot Lead 5 100al)
e running: Instructions are being executed
o Aleall il lay) 2855 oy Lgd o 2ail)
e waiting: The process is waiting for some event to occur
0 (pae Chaa It Alaall: jUsiiY)
e ready: The process is waiting to be assigned to a processor
o bl I laslia) [l o 3 el dolasl) 4, salad)
e terminated: The process has finished execution
o il (e Caghil dlaall 1elgaY)

Operating System Concepts — 9t Edition 35 Silberschatz, Galvin and Gagne ©2013

o34 iuleal) dabulie slet)
admitted

interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

JAY! olg 1AV Jasy)

Operating System Concepts — 9th Edition 3.6 Silberschatz, Galvin and Gagne ©2013

L N

=

O, Process Control Block (PCB) aglaelt a5 glaa

Information associated with each process <l slxall sa

lee IS, i o
(also called task control block) 4egal) oSa34l€ e, X process state
e S
Process state — running, waiting, etc el ills process number
Program counter — location of instruction to next
execute il s diaY) Aadail o yie (5 sin el dlac program counter

m CPU registers — contents of all process-centric
registers gras b sinae - 4 38 jall dallaall sas 5 Sase _
ideal) e S5 Al sl I’GQISte IS

® CPU scheduling information- priorities, scheduling
queue pointers - 4 S sall dalleall 3o g 4 san Cila lza

SUREY) sl) piee Al gan ey o1 6V memory limits
B Memory-management information — memory

allocated to the process 3_SIAl - & SIAll 5 la) il slaa list of open files

Llanll 4 Jl

® Accounting information — CPU used, clock time

elapsed since start, time limits sas 5 - 4w) il slas e o o
At 3l 3 gaall) dia abiall gl cadiioa) 438 el dalladll

m |/O status information — I/O devices allocated to
process, list of open files - /0 3¢ s Cila glas =S
da gidall Calalad) 48 g duleall anaiall =N

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.7

=

_—
“a,v'/ CPU Swifch From Process to Process gal @lliglaz ¢sa allzall Jygas gy

process P, operating system process P,

interrupt or system call

J.\S.Li t_ﬁj
ileall executing ‘1 /
d\; Y B .
PO UP save state into PCB, e
: ilaal)
PO . > idle P1
Aa ele il
4% il ideal reload state from PCB, 1
lea) P1 L s o,
PO >idle interrupt or system call executing 4xlexl)
P1
A o4 y = ! -
alaall | save state into PCB; .
P1 I
~idle Aaleal
Al ele ot P1
v 8) iuleal) |reload state from PCB, J
5) ,
dalaall exec:utmg W
PO <

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.8

| -
&,«;» 7 Context Switch leall Julg

A\,

B \When CPU switches to another process, the
system must save the state of the old
process and load the saved state for the
new process via a context switch
B Adead) Adla Biay o) g o AY Dlae (e gllaall J gy Lasic
ahaia Jpandy Aagdl) dplaad) aSad akia Oja Gk (5 dagadll
sasaad) dlead) aSas
B Context of a process represented in the PCB
dalan) aSad adala B (5958 Axland) (Bl
B Context-switch time is overhead; the system
does no useful work while switching
el aia Jee ol allail) gl ¥ le g (Blaad) Jpas by
Jaal

S
- =

2D\

3.9 Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition

S Process Scheduling

m Maximize CPU use, quickly switch processes onto CPU for time
sharing de yun ciblaad) Joast caan (A S sal) dadlaal) 5as gl PEE—Y\ a\dﬁuﬁ

i gl) acalBll 4 3 sal) dallaal) Bang o
B Process scheduler selects among available processes for
next execution on CPU 4aliall cibilasl) t e 33ay cilblaad) A g2
438 pall Apllaall Bas g o ALl Ldasll
B Maintains scheduling queues of processes Jgla sl sh audl
o Aadlaall

e Job queue - set of all processes in the system _gla -1
allaill) Gllead) poan (et 1l gl
e Ready queue — set of all processes residing in main

memory, ready and waiting to execute -4jalall gk -2
LA A 9 5 Jala e)11 3_SIAN 8 30 52 gall Cililaal) @AAUAZ.QJAM

e Device queues — set of processes waiting for an 1/O
device
o 1/0 bl LBiE Al cllet) de gana - 3 3gaY) st -3
Processes migrate among the various queues —alids (p Jaim Cllesl)

ladan oLl ghall X
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.10

"-“'”\?),v'”/ Representation of Process Scheduling bl 4 gay Jiia

®m Queuing diagram represents queues, resources, flows
B Gl | baddl |l glall Jiay il glall Jalada

| ready queue CPU

/O I/O queue = I/O request [«

< gl) 3y oLl time slice
expired

O Al s _ ol sl
child fork a
executes child
interrupt wait for an E
occurs interrupt

Operating System Concepts — 9th Edition 3.11 Silberschatz, Galvin and Gagne ©2013

v Schedulers <Y gl g1

m Short-term scheduler (or CPU scheduler) — selects which process should be executed next
and allocates CPU (anadi s clld ay laddss Cagy (Al dleall pad - (llaall OV sana) 20V 3 a8 4 s -]
48 yall dadlaal) 32a
e Sometimes the only scheduler in a system aUaill 8 xa ol J sanall (la¥¥) ez
e Short-term scheduler is invoked frequently (milliseconds) = (must be fast)
o (G 05S of ang) (Al L) oSt IS 2] ypeal Jsana eledinl oy

m Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue & alall 5 sida) s jlias) cang Al clileal) aasy - (il 1) & gas f) 2aY1 AL laddaaD

e Long-term scheduler is invoked infreqyently (seconds, minutes) = (may be slow) sleiul i
(Laday 058) (825 40)) Sie e JSy 21 dysha J sandll
e The long-term scheduler controls the degree of multiprogramming
0 5aaaiall daa pall As jy B V) gl Jganall oSy
® Processes can be described as either: ‘L) Glleall Coua g (Say

e |/O-bound process — spends more time doing 1/0O than computations, many short CPU bursts
opad Jad) | albaad) Jay 2) AV 5 JBaY) dee L5 e ol) o oz) AY) 5 Jaadl sadall dglesl)
laall

e CPU-bound process — spends more time doing computations; few very long CPU bursts
aleall o gda Jld) bl 818 g cale) ozl 3l 4 aellaall 528l dlenl)

Operating System Concepts — 9t Edition 3.12 Silberschatz, Galvin and Gagne ©2013

5’/"“/ Addition of Medium Term Scheduling ¥ dauw gia 4 g2a ddlia)

B Medium-term scheduler can be added if degree of multiple
programming needs to decrease <uilS 13 Ja¥) ddau gie 4l g2 ddlia) (Sa
Qi) Ui sanmial) Aaa yull ds

e Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

2l Aaiad il e 5)aT 5 e alad g e il e o 3a5 6 SIAN (e dalead) A1) 51l

swap in partially executed swap out
swapped-out processes

: ready queue @7 » end
I/O waiting
queues

Operating System Concepts — 9t Edition 3.13 Silberschatz, Galvin and Gagne ©2013

- o Process Creation 4l sLdil

m Parent process create children processes, which, in turn create other
processes, forming a tree of processes

B clbled) o 8 jand JuSG g (g A) cililas L b) g8y (Al g (sl cililes LA oY) dlae

m Generally, process identified and managed via a process identifier
(pid) denll Ca72a e LgdHlal g dalaal) daal oy cale JS

m Resource sharing options) sall 48 Hlie Gl jla

e Parent and children share all resources g A OS5 LY
JJ‘}AM

e Children share subset of parent’ s resources & ¢S i 3¥ ¥ LY
2l 5e laz
e Parent and child share no resources) sall & S iy ¥ 2¥ Y1 5 LY
m Execution options) Gl jla
e Parent and children execute concurrently sl 8 34w aY ¥ 5 LY
e Parent waits until children terminate ¥ s¥) elgiil ia hain LY

Operating System Concepts — 9t Edition 3.14 Silberschatz, Galvin and Gagne ©2013

=

) :
G Process Creation (Cont.)

B Process executes last statement and then asks the operating
system to delete it using the exit() system call.

Bl elesinl aladioly 480 Juiil) sl e allay 3 a1 5 jluadl dylesd) 243
)z

e Returns status data from child to parent (via wait()) ¢!
wait() Jaiy) JIA e e LY () el e il

e Process’ resources are deallocated by operating system

parent :/w_alit\ resumes
child ——>{ exec() »

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.15

=

-

A,Am-&/ . . -
o Process Termination 4slell slgi

m Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so: LY b 3
£l LAl L) any | ()als) aUaill ele il aladinly ol culleall 2y

e Child has exceeded allocated resources ga—sall) gall el jglas
"

e Task assigned to child is no longer required a Lyl A Al dagdl)
4 sllae 223

e The parent is exiting and the operating systems does not allow a
child to continue if its parent terminates el meud ¥ 5 LY el o4
L) el a3 13) Aaliadly el Jonodial

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.16

Qn/_.gp-/ : et w
Cooperating Processes 4 saiall ciidaal)

® Independent process cannot affect or be affected by the execution
of another process Al ke Jaihy JE o g o) (Sar Y AlEiia Aylaal)

m Cooperating process can affect or be affected by the execution of
another process Al alee ddwiy il 5l g ol S 1 4 slaiall dylaal)

B Advantages of process cooperation Glalaall 8) slatll L) 3
e Information sharing Gila gleall Jalis -1
e Computation speed-up Glaall de ju 34 -2
e Modularity agaaill -3
LW -4

e Convenience

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.17

{AM‘ ,/ ” e “ 2
a,r' Producer-Consumer Problem dlgiwall g giial) Alsdia

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

pProcess

B il LSl il e slal) i) dulee g ¢ 5 sbatiall Cilleall 3
Alginadll

e unbounded-buffer places no practical limit on the size
of the buffer

e bounded-buffer assumes that there is a fixed buffer
size

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 3.18

Chapter 4. Threads &
Concurrency ¢/l

r & Chapter 4: Threads

m Qverview

® Multicore Programming
.. 3) LS e llae (e S Ao 4y glaall 4y 60Y) Basaia A)
® Multithreading Models
m Thread Libraries
m Implicit Threading clleall 4da 45 5
m Threading Issues 4 Adas £ Ugal 55 A JSbial)
m Operating System Examples 4ijaill aadias) o3 e 48y

-3

Operating System Concepts — 10th Edition 4.2 Silberschatz, Galvin and Gagne ©2018

A

\{*,..f Obj ectives

®m |dentify the basic components of a thread, and contrast threads
and processes 4ijaill dulaat duulul) s gl) iy sl

m Describe the benefits and challenges of designng
multithreaded applications 4ijail) dasia il asaai! ciaadl) g 2 gil) Ciua g

m lllustrate different approaches to implicit threading including thread
pools, fork-join, and Grand Central Dispatch

m Describe how the Windows and Linux operating systems
represent threads 4eii) L& 4 jail) Jilad 4dss

m Design multithreaded applications using the Pthreads, Java,
and Windows threading APIs 42l aaas 4.

&

Operating System Concepts — 10th Edition 4.3 Silberschatz, Galvin and Gagne ©2018

=

Ny Motivation
® Most modern applications are multithreaded sUas) ciliis) g dallaa Lgaa Jaladl) Jgo (S
B Threads run within application S) gtz (s &3 o) Adla G828 aa) gl 4 A
m Multiple tasks with the application can be implemented by
separate threads
e Update display
e Fetch data
e Spell checking
e Answer a network request
1388 5., Juall s AV 5 5 guall s AV g @ guall dadlaal L Baaly . b5 Jiile Al G g gl Jlias
B Process creation is heavy-weight while
thread creation is light-weight
JadVd | datlaal) Jia 508 jaluaa JAL Y ASY Aeddicd S Gl o) JaY L8l Jee AdiS dl 3 A
dallaa sl Cpa Juaad) dallaall Slady saseta &y i el)
m Can simplify code, increase efficiency fﬁ\lﬁ
m Kernels are generally multithreaded W-¢d cad Slal 43 Sasia & Lpaalf L) 76

VR

Operating System Concepts — 10th Edition 4.4 Silberschatz, Galvin and Gagne ©2018

<% Single and Multithreaded Processes

n

-
S

code data files code data files
registers PC stack registers| | |registers| | |registers
stack stack stack
PC PC PC
thread—» ;
<«—— thread

single-threaded process multithreaded process

1

g

Operating System Concepts — 10th Edition 45 Silberschatz, Galvin and Gagne ©2018

u,,f,:} Multithreaded Server Architecture

.

4 Jadl) ddaia [jlecal) daia add 4 jlara

(2) create new
(1) request thread to service
the request
client > server » thread

N

(3) resume listening
for additional
client requests

@ addicall g Clinentdls CPU ¢ 3 ke s server 4l ga g e
dotantl &) jloca/ jlesa LS) 52 a5l Qllall OB LAY L dole Qllay
clilee by dle Clinent 3 sla¥l i paiad) ga ¢ LT JaY 3aa) gl

s A

Operating System Concepts — 10th Edition 4.6 Silberschatz, Galvin and Gagne ©2018

§F Benefits

m Responsiveness — may allow continued execution if part of

process is blocked, especially important for user interfaces
Lo o Ada ¢ g Jla B LAY (o geall) JS B gy Y Cuag gral) Al 344y)

m Resource Sharing — threads share resources of process, easier

than shared memory or message passing
shaall (il faal g dalee g) Adlida clblae Cpa sl i e SS) 08 cpe dnadadl jalaa AS L

bih an) g g Sl S 1 8a shaall 098 Y duag

®m Economy - cheaper than process creation, thread switching lower
overhead than context switching

gl g Line (815 2 A el ga ((Aplad)l jolas dali (e) gad N (b jlsallfay Al sLS) Gad
Adas g Qe g L) (1

m Scalability — process can take advantage of multicore

Architectures
Fia) S8 45 63Y) ddmiia Ay jlara aladia) (Say Euay ¢ aUAT aladiad & agil) 4008

B Reference;

https://www.tutorialspoint.com/operating_system/os_multi_threadi f{m\j
ng.htm o ‘?\

Operating System Concepts — 10th Edition 4.7 Silberschatz, Galvin and Gagne ©2018

https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

P Multicore Programming

m Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

s lge Cipdali £ auday 13 g Lgldla ciladlaa Bas o S Alalf (g ging
e Dividing activities sauial) clallall fa (5 guall) 32l cillalidl) 45 jas
e Balance
Gl AY) (9d e de o o) a8 KD g gledlly oS Alal) B ciladlaall JS aladia 45) ga
e Data splitting <lleal) Jaid yuil g 48181 cilallaal) ¢ il 43323
e Data dependency dassa 48 by 4 i) aranai gl (S b o Baadeal) cililyl) 48 oa
e Testing and debugging i (Alallg 48 Alal) A eUadY) paual g cilibud) Lad)

m Parallelism implies a system can perform more than one task
simultaneously

g by B dega (pa SSH el AdSay aBAL O a3l 30

m Concurrency supports more than one task making progress f,«\
Adil) 8l Bas) g daga (e ST el S as —’)&\;\]

operating sysiem BneSiNGlERFQCESSOr / core, scheduler providing CONCHMERGY. cavin and cagne 2018

r & Concurrency vs. Parallelism

m Concurrent execution on single-core system:

single core T1 T, T3 Ta | U3 T, T, T, T,
time .
m Parallelism on a multi-core system:
core 1 T1 T3 T, T3 T1
core2 | T, T, T, T, T,
time

A

W
~ A

3 < \
et)’% \;‘}
ol

by

Operating System Concepts — 10th Edition 4.9 Silberschatz, Galvin and Gagne ©2018

P Multicore Programming

m Types of parallelism

e Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each
1000 (2 1000 44 shuan oz Jla o8l o il 3 68

e Task parallelism — distributing threads across cores, each
thread performing unique operation

258 o @ jla B) el o 30 58

m Reference: https://www.tutorialspoint.com/data-parallelism-vs-
task-parallelism

’ ¥

I'y
3

Operating System Concepts — 10th Edition 4.10 Silberschatz, Galvin and Gagne ©2018

https://www.tutorialspoint.com/data-parallelism-vs-task-parallelism
https://www.tutorialspoint.com/data-parallelism-vs-task-parallelism

‘ﬁfw’ Data and Task Parallelism

data
| | | I
data l l l l
parallelism
core 0 core 1 core 2 core 3
data
task
parallelism
core 0 core 1 core 2 core 3

Operating System Concepts — 10th Edition 4.11 Silberschatz, Galvin and Gagne ©2018

i
«$»’ User Threads and Kernel Threads

m User threads - management done by user-level threads library
m Three primary thread libraries:
e POSIX Pthreads
e Windows threads
e Javathreads
m Kernel threads - Supported by the Kernel
m Examples - virtually all general purpose operating systems, including:
e Windows
e Linux
e Mac OS X
e IOS
e Android

Operating System Concepts — 10th Edition 412 Silberschatz, Galvin and Gagne ©2018

‘*‘J
‘*v User and Kernel Threads
user threads
user
space
; g 3 kernel
space
kernel threads
Reference:

https://www.tutorialspoint.com/operating system/os multi threading.htm

Operating System Concepts — 10t Edition

4.13

Silberschatz, Galvin and Gagne ©2018

https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

P Multithreading Models

® Many-to-One

B One-to-One

® Many-to-Many

Operating System Concepts — 10th Edition 4.14 Silberschatz, Galvin and Gagne ©2018

«EH Many-to-One

® Many user-level threads mapped to
single kernel thread

® One thread blocking causes all to block

® Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time

m Few systems currently use this model

m Examples: user threads
e Solaris Green Threads ; g 'g ;
e GNU Portable Threads

Ng/

kernel threads

user
space

kernel
space

™
4\5

Operating System Concepts — 10th Edition 415 Silberschatz, Galvin and Gagne ©2018

r & One-to-One

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread

More concurrency than many-to-one

Number of threads per process sometimes
restricted due to overhead
ALY La A1 Gl g ol leaall Janil AU 3508, ada Lgdal i g <l jluaal) das

m Examples

o Windows user threads cer
e Linux ; ; 3 g space
| l
I l

L L [

kernel threads

S Y
[4 vf“ .

Operating System Concepts — 10th Edition 4.16 Silberschatz, Galvin and Gagne ©2018

55 Many-to-Many Model

m Allows many user level threads to be
mapped to many kernel threads

m Allows the operating system to create
a sufficient number of kernel threads

®m Windows with the ThreadFiber
package

m Otherwise not very common
e 051 (A AN dae A ga JE sl 8 3 A aae (68) U Gl BaaY

user threads
user

space

; ; g kernel
space

kernel threads <
W
o %

I'y
3

Operating System Concepts — 10th Edition 417 Silberschatz, Galvin and Gagne ©2018

F7 Two-level Model

® Similar to M:M, except that it allows a user thread to be bound to kernel
thread
) g Al aalg gl daatia zadmia Lal Oy glaa Ao (g ging
dalall o LaadSy T 4d) (!

user threads
user
space
L
I
; g g 3 kernel
space
kernel threads

Y
S
-~ .

S
¥,

-l

Operating System Concepts — 10th Edition 4.18 Silberschatz, Galvin and Gagne ©2018

a;y

P Thread Libraries

m Thread library provides programmer with API for creating
and managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

Fa =X
- '

)
o d

Operating System Concepts — 10th Edition 4.19 Silberschatz, Galvin and Gagne ©2018

.
b4

N/ Pthreads

m May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

Specification, not implementation

API specifies behavior of the thread library, implementation is
up to development of the library

®m Common in UNIX operating systems (Linux & Mac OS X)

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.20

o Pthreads Example

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])
{
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */

/* set the default attributes of the thread */
pthread attr_init(&attr) ;

/* create the thread */

pthread create(&tid, &attr, runner, argv[1i]);

/* wait for the thread to exit */
pthread_join(tid,NULL) ;

50

-y

printf("sum = %d\n",sum); —;%;;m

Operating System Concepts — 10th Edition 4.21 Silberschatz, Galvin and Gagne ©2018

ot Pthreads Example (cont)

/* The thread will execute in this function */
void *runner(void *param)

{
int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += j;

pthread exit(0) ;

}

Operating System Concepts — 10th Edition 4.22 Silberschatz, Galvin and Gagne ©2018

W{;ﬁ Pthreads Code for Joining 10 Threads

i

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

A\
dal

el

-—

Operating System Concepts — 10th Edition 4.23 Silberschatz, Galvin and Gagne ©2018

< Threading Issues

m Semantics of fork() and exec() system calls
m Signal handling
e Synchronous and asynchronous
m Thread cancellation of target thread
e Asynchronous or deferred
m Thread-local storage
m Scheduler Activations

Operating System Concepts — 10t Edition 4.24

AN

Silberschatz, Galvin and Gagne ©2018

a;y

T Semantics of fork() and exec()

m Does fork () duplicate only the calling thread or alll
threads?
e Some UNIXes have two versions of fork

® exec () usually works as normal — replace the running
process including all threads

PP =\
Ay
5

' *

\'y
0

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.25

Ny Signal Handling

n Signals are used in UNIX systems to notify a process that a
particular event has occurred.

n Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:
1. default

2. user-defined

n Every signal has default handler that kernel runs when
handling signal

| User-defined signal handler can override default
| For single-threaded, signal delivered to process

’\\
f;;:)

Operating System Concepts — 10t Edition 4.26 Silberschatz, Galvin and Gagne ©2018

g5 Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

| Deliver the signal to the thread to which the signal
applies

| Deliver the signal to every thread in the process
| Deliver the signal to certain threads in the process

| Assign a specific thread to receive all signals for the
process

R

Operating System Concepts — 10th Edition 4.27 Silberschatz, Galvin and Gagne ©2018

Signal Handling (Cont.)

A signal is used in UNIX systems to notify a process that a
particular event has occurred.

Types of occurrence of a signal

A signal may be received either synchronously or
asynchronously depending on the source of and the reason
for the event being signaled

1. Asignal is generated by the occurrence of a particular event

2. The signal is delivered to a process
d 3. After delivered , the signal must be handled

Signal Handling (Cont.)

Synchronous Signal Examples of synchronous signal include
illegal memory access and division by 0. If a running program
performs either of these actions, a signal is generated.
Synchronous signals are delivered to the same process that
performed the operation that caused the signal.

Asynchronous Signal when a signal is generated by an event
external to a running process, that process receives the
signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as
«control><C>) and having a timer expire. Typically, an
asynchronous signal is sent to another process.

Signal Handling (Cont.)

1. Adefault signal handler

2. A user-defined signal handler

Every signal has a default signal handler that the kernel runs
when handling that signal. This default action can be

overridden by a user-defined signal handler that is called

to handle the signal. Signals are handled in different ways.

Some signals (such as changing the size of a window) are
simply ignored; others (such as an illegal memory access)

’

Are "‘ ”. \\/ ‘.“\ "WV 2Ta ~ 1'. alalela ’

Signal Handling (Cont.)

Handling signals in single-threaded programs is
straightforward: signals are always delivered to a process.

S IS more complicared 1

In general, the following options exist:

| [(Wkﬁm‘thg;ﬂgnc|1o the thread to which the guuu4< pplies

2. Deliver the signal to every thread in the process
3 bc|ng»‘ThcfﬂqnwlTcsggr1wn11%rtﬁm€tn|Thg process
4 Ass specit fic tThread to receive all signals for the process

The meThod for' delivering a signal depends on the type of signal
generated

process

Sy hread Cancellation

® Terminating a thread before it has finished
Thread to be canceled is target thread
m Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

e Deferred cancellation allows the target thread to periodically
check if it should be cancelled

m Pthread code to create and cancel a thread:

pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

/* cancel the thread */
pthread cancel (tid) ;

/* wait for the thread to terminate */ Agf’f“ﬁ
pthread join(tid,NULL); AN

Operating System Concepts — 10th Edition 4.32 Silberschatz, Galvin and Gagne ©2018

P hread Cancellation (Cont.)

® Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

| Mode] State | Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

m |f thread has cancellation disabled, cancellation remains pending
until thread enables it

m Default type is deferred

e Cancellation only occurs when thread reaches cancellation
point

» l.e. pthread testcancel ()

» Then cleanup handler is invoked
® On Linux systems, thread cancellation is handled through signals

X

Operating System Concepts — 10th Edition 4.33 Silberschatz, Galvin and Gagne ©2018

r & Thread Cancellation in Java

m Deferred cancellation uses the interrupt () method, which sets the
interrupted status of a thread.

Thread worker;

/* set the interruption status of the thread */
worker .interrupt()

m A thread can then check to see if it has been interrupted:

while (!Thread.currentThread() .isInterrupted()) {

}

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.34

End of Chapter 4

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

Chapter 4: Threads
& jlesal) 1ol) Guadl

o Athread: is a basic unit of CPU utilization, consisting of a program counter,
a stack, and a set of registers, (and a thread ID.)

ooSas el dlae e OSE S el dallaall an g aladiul (e Al 3oy ol
« Traditional processes have a single thread of control — There is one

program counter, and one sequence of instructions that can be carried out
at any given time.

o by e dlia — 5kl e dals e Legal s gl (Slesall culd ciblee) Al cilleal)
8 Y (e g sl 8 adii Sy) Claglail) (e aa) g Qb g canl

o Multi-threaded applications: have multiple threads within a single process,
each having their own program counter, stack and set of registers, but

sharing common code, data, and certain structures such as open files. As
shown in Figure 4.1.

o Cus aalll Addeal) pala jlie (e ST el Al Clandaill ez jleal) 3aaetall Cilapdatl)
(ilardeill) cl jaill o L LSy 4y (ald (O lase 5, 0u3Sa 5 el alac) e S
-4 K8 A e se LS As gl clalal) i A JSLia 5 A8 jidll

code ‘ data files code data files

registers stack registers ||| registers ||| registers

stack stack stack

thread —> ; ; g g«-—-— thread
Dlac

Ay e Al dlee Al Hlusall Baaetis 4y

single-threaded process multithreaded process
Figure 4.1 - Single-threaded and multithreaded processes

Benefits Badniall < jlusal) il'gd

1- Responsiveness - One thread may provide rapid response while other
threads are blocked or slowed down doing intensive calculations.
EJ}.E;;A UJS.' &_IJM\A:\SJLA.\:UA\J_J)»M\A.LN\ 32xtal) t_\JLumj\ uAJLum _)Sﬁd&-z_\\éjuy‘

2- Resource sharing - By default threads share common code, data, and
other resources, which allows multiple tasks to be performed
simultaneously in a single address space.

A yidiall dpne) Claglaill 8 ol i) (G Baaeiall < jlusal) & iS5 -) sall AS e
Baa) 5 () gie Aalue A aaly iy L Badie alge i rrany Las s A Y 3) sall 5 il 5,

3- Economy - Creating and managing threads (and context switches
between them) is much faster than performing the same tasks for
processes.

ot el e S & sl s (Lagn land) Jali) sasaiall <l jlusall 3 513) 5 o L) - SLaBY) -
Aal gl sluall Gl cilleal) 3 algall

Scalability, i.e. Utilization of multiprocessor architectures - A single
threaded process can only run on one CPU, no matter how many may be
available, whereas the execution of a multi-threaded application may be
split amongst available processors.

e e phill (ary aal g allae e dadd 25 o) S aal gl bl b dlaall s aa il AL
e o andy o) (Say Baaaia) Gl jlisd) Gl Gldpadail) 365 Laiy 53 52 gl Slallal)
58 siall Cilalladll

Multithreading Models: Badaiall &l jlesall 7 dlad

1.Many-To-One Model 2alg J) aa%a zigai-1

Many user-level threads are all mapped onto a single kernel thread.

s 33

) gt padiuall a8 82aa0e Gl s (e O S
;<— user thread dS..IJ\ ‘_g LS 3\).\3‘ _}:\A ‘; JA‘J JLHAA

-<— kernel thread

Figure 4.5 - Many-to-one model

2 . One-To-One Model: aalg A g gisai-2

The one-to-one model creates a separate kernel thread to handle each user
thread.

<«— user thread dSCAdAL’—M 3\)-\3‘)JAUAJ-ASMJL.M Jjj.l

; ; ; ; 8w [[R DR PRENANON | TEN: B WV
é é é é <«—— kernel thread

Figure 4.6 - One-to-one model

3. Many-To-Many Model 3xia 1) aaia zigai -3

The many-to-many model multiplexes any number of user threads onto an equal

or number of kernel threads, combining the best features of the one-to-one and
many-to-one models.

? ; ¢ s Ladae Al adiial) Jaa A dday) il G bl (e 220

; e ¢ 3l jaa b Adayl jiall Gl jlsal) (e dae (e ST

&) Baxatall 73 gai g aal g) as sl 3 gad i e Jaadl

RE

§<— user thread

<«—kernel thread

Figure 4.7 - Many-to-many model

4. Two-level model O gia G migai -4

One popular variation of the many-to-many model is the two-tier model, which
allows either many-to-many or one-to-one operation.

S S

; ; <«— user thread Adxta ‘;\ Adxta uP.J)A.‘. UA U)Sl' P || C.JLAAS\ aal
_.JA\} LA‘ .JA\} 9

<«— kernel thread

Figure 4.8 - Two-level model

Chapter 5: CPU Scheduling

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

o
Y,

T Objectives

\
S\

® To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems

® To describe various CPU-scheduling algorithms

U

LA
Operating System Concepts — 9th Edition 6.2 Silberschatz, Galvin and Gagne ©2013

o . N
() " O8S (A dsa sl gliad
r O Basic Concepts CPU Burer
TR 300 W ok G J sl
. ety (Ll mlleal)

®m Maximum CPU utilization .

obtained with multiprogramming oad store

dd CPUDb
= CPU-I/O Burst Cycle — Process B e et
execution consists of a cycle of
CPU execution and I/0O wait

wait for I/O I/O burst

store increment

. index CPU burst
CPU burst: the amount of time the write to file "
process uses the processor before it is _
no longer ready nattort oburst

S A dadlaally Laila Y ghdia) Al load store

3 ‘e K . CPUb t
Ga SR U e o jla) ey AUl (4 515 road flm fle -
Uloia B LaS gllaall e Uagd Bale A AN JASY) 5 3¢l
dallaal) Ban g A 2l (e cila Jraail dala 3 (gie it for 1O /O burst

ﬂjgé@b.d\dﬁulg\ glad &3333..3}5).«3\
DL G Yy 4d o A dallaa andigfda UAIY)

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.3

T A ganll cipa sl o Al yulaa

o Scheduling Criteria

I
m CPU utilization — keep the CPU as busy as possible
Juad) CuilS LalS JAS) petlad) Jadi da)) sAd) cuilS La IS
doalityy

®m Throughput — # of processes that complete their execution per
time unit

Jucad) da) gAd) CuilS LalS ¢ JAS) dnia) Bas g JSI JAlaiSal) cilaldlad) dae CuilS La S

Alaia) (4
B Turnaround time — amount of time to execute a particular

process
Juad) dsa)) gAd) cuilS LalS ¢ JB) dima dlas LT o U cBgl) jlala (S La JS

DN ()
m \Waiting time — amount of time a process has been waiting in the
ready queue
Cuils LalS ((JB) 3 jaladl UL daild L8 o il ddead) cullS (oA) cdgl) jlala S La S
Juad) dza) A0

Operating System Concepts — 9th Edition 6.4 Silberschatz, Galvin and Gagne ©2013

o
Y,

&/:,;7‘/ Scheduling Algorithm Optimization Criteria

>
4"
>
i

LA ale (S Al gaal) il
B Max CPU utilization el Maiu) b
® Max throughput gllaall Apalii) uadl
B Min turnaround time dallaal) LA51 A () JBI
® Min waiting time 4alad) jetla B USRI () JBI
B Min response time At ey 8

dadalfall A48 484 (IS

reemptive :

= Preemptive
admitted interrupt exit

Non-preemptive
dakaliall 408 L2
I/O or event wait

Non-preemptive
daklBall 4L &
I/O or event completion

scheduler dispatch

U

A
Operating System Concepts — 9th Edition JQ"S’"\X‘ Silberschatz, Galvin and Gagne ©2013

‘*%q:i First- Come, First-Served (FCFS) Scheduling
Yol adiy Vo) adldll s a3l sd
datlaall
Process Burst Time arrival time
P, 24 0
P, 3 0
P, 3 0

B Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

N

Pl P2 PS
0 24 27 30
m Waiting time for P, =0; P, =24; P,=27 AT ya) 1 Adaadla
m Average waiting time: (0 + 24 + 27)/3 =17 @ 058) e A
® Turnaround time = Waiting time + Burst time o ‘&.u,'fu
Glalleall 24T £ gana
For P,= 0+24=24, P,=24+3=27, and P;=27+3=30 Lgls

e —

SN
, 25 N

<
WS

“l A48

Operating System Concepts — 9t Edition 6.6 Silberschatz, Galvin and Gagne ©2013

¥
1,

)

- FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
I:)2 J P3 J Pl
B The Gantt chart for the schedule is:

P, | P, P,
0 3 6 30
® Waiting time for P, = 6;P,=0.P,=3 Cblady fad) o ; Aliadls
e ’ g G138 AT a3 JBYY
m Average waiting time: (6+0+ 3)/3=3 clglead) JS 3l Saga i
® Much better than previous case 4 S JUSIY) Jamag
® Turnaround time = Waiting time + Burst time Ll Latie Al galeal) JUialy

LATH Lia) AV ciladlaall
For P,= 6+24=30, P,=0+3=3, and P,=3+3=6 c J AN cladlaad,

S SN Sana Baly3) g2 dlld (b pedlaall Y g) BTN U) ASY) cillenl) Jguag dis 1 Aiada
SN JUREY) Jare JuI&S 1 gais € ()l pllaall Y o) BdEill Lia) JBY) cililaad) Jguag dic g £ 0

Operating System Concepts — 9th Edition 6.7 Silberschatz, Galvin and Gagne ©2013

.

ot FCFS Scheduling (Cont.)

Process Burst Time Arrival Time
P, 24 0
P, 3 5
P, 3 10

®m The processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P1=0 P2=5 P3=10
| | |
| | |
] | | P P, | R
0I ! ' 24 27 30

® Waiting time for P, = 0-0=0; P, =24-5=19; P,=27-10=17
® Average waiting time: (0+ 19+ 17)/3 =12
B Turnaround time = Waiting time + Burst time

For P,= 0+24=24, P,=19+3=22, and P;=17+3=20

e —

X\ .. " \
d V‘»f; S
y o
/ (4
A ‘E P

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.8

“$»7 Shortest-Job-First (SJF) Scheduling
& Yol a5 sall) Cladlaall = dna y) oA
(ARad) ALiaY) o Ade Giai La 18)

m Associate with each process the length of its next CPU burst

e Use these lengths to schedule the process with the shortest
time

m SJF is optimal — gives minimum average waiting time for a given
set of processes

e The difficulty is knowing the length of the next CPU request
e Could ask the user

e —

\¥
_~- A\
. e)
P o
7 ‘u\\\\
“ 5
“ P

Operating System Concepts — 9th Edition 6.9 Silberschatz, Galvin and Gagne ©2013

™|
s Example of SJF
Process Burst Time
sy Py 6
dag) P, 8 Jsasl () O Qa8 Lo
P, 7 0 s 4x) clallaal) Jd
| Lland) cpa to i) pllaall o ciladlaall 43 gan Aty
®m SJF scheduling chart cuilS Jalada ‘fu;ﬂﬁj gWCME ng\z\ém“
P, P, P P,
9 16 24

B Average waitingtime=(3+16+9+0)/4=7

A DAY A
Silberschatz, Galvin and Gagne ©201

Operating System Concepts — 9t" Edition 6.10

ol
(.

“377 Examplel of Non-Preemptive SJF

m Consider the following five processes each having its own unique burst time

and arrival time.

Process Burst time Arrival
Queue time
P1 6 2
P2 2 5
P3 8 1
P4 3 0
P5 4 4
Operating System Concepts — 9t Edition 6.11 Silberschatz, Galvin and Gagne ©2013

. Soluti
r 4 olution
0o 1 2 3 4 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
p4 [1]2]3
p3 123|456 7]8]
pl 112(3[4]5]6
p5 1[(2]3] 4
p2 1] 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[p4]p4fpa]| | | 1 1+ 1+ [& § [T [|}
p4
p3 [1]2]3|a]5]6|[7]8]
pl 1]1]2]|]3]4]|]5]6
p5 not come till now at=3
p2 not come till now at=3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
P4 |p4]p4|pl
p4
p3 112]|]3]14]|]5]16]|7]38
pl 11213141516
p5 112({3]4 ’,,a*"\\
p2 _-_ not come till now at=3 »A__“/{"‘V"‘(,";: N
V.

Operating System Concepts — 9t" Edition

W
29%

6.12 Silberschatz, Galvin and Gagne ©2013

S Solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
lp4a]palpalpr|pi]pr]|pa]p2fpz] | | | | L 1T [1T L 1T T 1 | 1]

p4

p3 [1]2]3]4a]5]6]7]8]

pl 1l2]3]a]5]6s

pS 121314

p2 1] 2
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23
lpa|pafpafpifpifpifpifpifpa] | | | | | [[[¢ ¢ ¢ | T 1}

p4

p3 [1]2[3]afs]e]78]|

pl

p5 1 [2]3]4]

p2 112
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23
lpalpafpafpifpifpifpifpafpa] | | | | | [[[¢ ¢ ¢ | 1 1}

p4

p3 l1]2]3fafs5]6]7]8]

pl 2=

pS [1]2]3]4] ,’,-(N\

p2 1|2 V. ¢

A%

Operating System Concepts — 9t Edition 6.13 Silberschatz, Galvin and Gagne ©2013

P Solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
lp4|palpalpar|pt]ptfpr]pa]pafp2fe2] | [[I | L T 1 1 T 1T 1

p4

p3 1]2]3]4a]s5]6]7]8]

pl

p5 [1[2]3[4a]

p2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
lp4|palpalp1|pt]ptfpr|par]p2fp2fp2] | [[| | [T T 1 [[T 1]

p4

p3 2]2]3]als5]6]7]8]

pl

p5 1 [2]3[4a]

p2
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23
|p4[p4]p4lpr|p1|pr]pifpr]prfp2]p2fps]|psfps]|pes|] | [| [T | [1 |

p4

p3 2]2]3]4a]5]6]7]8]

pl

p5 x"f\\

p2 ,A‘.A,/{"“‘,‘,i N

D -

Operating System Concepts — 9t Edition 6.14 Silberschatz, Galvin and Gagne ©2013

r.af Solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
p4 |palpalp1|pt]ptfpr|p1]pt|p2fp2]p5]psips(es] | [| | | [|]

p4
p3 l1]2f3]afs5[e]7[8]
pl
p5
p2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[p4 [p4Tp4Tp1pilpi]p1[pip1[p2]p2]p5 [p5 [p5 [p5[p3]p3[p3[p3]p3p3]p3]p3]

p4
p3
pl
p5
p2

Operating System Concepts — 9t Edition 6.15 Silberschatz, Galvin and Gagne ©2013

)

g/m_.\

%7/ Example2 of Non-Preemptive SJF

m Consider the following five processes each having its own unique burst time

and arrival time.

Process Burst time Arrival
Queue time
PO 7 0
P1 4 2
P2 1 4
P3 4 S

Operating System Concepts — 9t" Edition

6.16

Silberschatz, Galvin and Gagne ©2013

r & Solution

pO 1 2 3 4 5 6 7

pl 1 2 3 4

p2 1

p3 1 2 3 4

PO | PO | PO | PO | PO | PO | PO
pO 1 2 3 4 5 6 7
pl 1 2 3 4
p2 1
p3 1 2 3 4

PO | PO | PO | PO | PO | PO | PO

PO

pl 1 2 3| 4

p2 1

p3 1 2 3 4 ,,aﬂ\

AL

Operating System Concepts — 9t Edition 6.17 Silberschatz, Galvin and Gagne ©2013

&V'"“, []
P Sol
e olution
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PO | PO | PO | PO | PO | PO | PO | P2
pO
pl 1 2 3 4
p2
p3 1 2 3 4
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PO | PO | PO | PO | PO | PO | PO | p2
PO
pl 1 2 3 pat
p2
p3 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PO PO PO PO PO PO pOIp2|pl|pl|pl|pl
PO
pl
P2
3 1 2 3 4
- ‘;ﬁ, W)
L W
Operating System Concepts — 9t Edition 6.18 Silberschatz, Galvin and Gagne ©2013

r o Solution

o\
(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pO [po [po [po [poJpoTpo[p2[piTpifpifpip3 [p3]p3[ps
pO
pl
p2
p3

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.19

> o Solution

B Gantt chat

P4 P1 P2 P5 P3

0 3 9 11 15 23

m Let's calculate the average waiting time for above example.

Wait time

P4= 0-0=0

Pl= 3-2=1

P2=9-5=4

P5=11-4=7

P3=15-1=14

Average Waiting Time= 0+1+4+7+14/5 = 26/5 = 5.2

A

A
Operating System Concepts — 9th Edition 6.20 Silberschatz, Galvin and Gagne ©2013

=

-

T .
“%7/ Example of Preemptive SJF

® Preemptive SJF

® In Preemptive SJF Scheduling, jobs are put into the ready queue as they
come. A process with shortest burst time begins execution. If a process with
even a shorter burst time arrives, the current process is removed or
preempted from execution, and the shorter job is allocated CPU cycle.

m Consider the following five process:

® Process Queue Burst time Arrival time
P1 6 2
P2 2 5
P3 8 1
P4 3 0
P5 4 4

S
2 ‘i;_M
A 29X

Operating System Concepts — 9t Edition 6.21 Silberschatz, Galvin and Gagne ©2013

r & Solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

p4 11213

p3 112|3|4]|5]|6]|7]S8
pl 1]12]13|4]|]5]6

p5 112]13]4

p2 1]2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

p4 | p4 1 p4
p4 11213
p3 112|3|4|5]|16]|7]S8
pl 1123|4516
p5 112]|3]|4
p2 112
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
p4 |p4 |p4|pl
p4
p3 112|314 |5]|6]7]S8
pl 1]12)|3|4|5]|6 L
5 12|34 /“‘AP\‘\\
p2 1|2 S q'b“";,\ ;“

Ad

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.22

r & Solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

p4 | p4 | p4 | pl | p5
p4
p3 112|134]|]5]|6]7]S8
pl 213]14]15]6
P> 1]12|31]4
p2 1]2
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
p4 |p4d|p4d |pl|p5]|p2|p2
p4
p3 112|134]|]5]|6]|7]8
pl 213]14]15]6
P> 21314
p2 112
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
pa | pa|pd |pl|p5|p2]|p2|pP5]|pPS5|pP5
p4
p3 112|134]|5]|6]|7]S8 i
pl 213]14]|]5]6 /’Ah\\\
p5 2|34 st .00
p2 A A

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.23

r Solution

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
p41p4|p4fpl|p5|p2|p2|pS[pS|pS|pl|plfpl|pl|pl

p4
p3 1]12|3|4]|5]|6]7]S8

p5
p2

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
P4 |p4|p4|pl|pS|p2|p2|pS|pS|pS|pljpljpljpl|pl

p4
p3 112 |3]|4]|5|6]7]S8
pl
p5
p2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

p4 |p4 |p4 |pl|pPS5|p2|p2|p5|p5 p5_p3 pP3 [P3| p3|p3 |p3|p3|p3

p4
p3 112|314 |5|6]|7]8)
pl = k\\

p5 e S0
p2) 4 ‘:’ \

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.24

=

-

T .
“%7/ Example of Preemptive SJF

® Preemptive SJF

® In Preemptive SJF Scheduling, jobs are put into the ready queue as they
come. A process with shortest burst time begins execution. If a process with
even a shorter burst time arrives, the current process is removed or
preempted from execution, and the shorter job is allocated CPU cycle.

m Consider the following five process:

® Process Queue Burst time Arrival time
P1 6 2
P2 2 5
P3 8 1
P4 3 0
P5 4 4

S
2 ‘i;_M
A 29X

Operating System Concepts — 9t Edition 6.25 Silberschatz, Galvin and Gagne ©2013

2 Solution
B Gantt chat
P4 P1|{Ps | P2 P5 P1 P3
0 3 a 7 10 23

m Wait time

m P4=0-0=0

B Pl= (3-2)+6 =7
m P2=55=0

m P5=4-4+42 =2

m P3=15-1=14

O

Operating System Concepts — 9t" Edition

6.26

Average Waiting Time = 0+7+0+2+14/5 = 23/5 =4.6

S

5 =3 =..\
I WS
sl A%

Silberschatz, Galvin and Gagne ©2013

> wﬁxample of Preemptive Shortest-remaining-
time-first SJF

® Now we add the concepts of varying arrival times and preemption to

the analysis
Process Arrival Time Burst Time
= 0 8
P, 1 4
P, 2 9
P, 3 5
® Preemptive SJF Gantt Chart
P, P, P, P, P,
0 1 5 10 17 26
m Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

e —

N
N AN
4 e
£ «:S\ "
;ﬁ%\\\\‘
P e/
“(
%
“ 498

Operating System Concepts — 9t Edition 6.27 Silberschatz, Galvin and Gagne ©2013

‘f’%:ﬁ Example of Priority Scheduling
Process Burst Time Priority
P, 10 3
P, 1 1
P 2 4
P, 1 5
P. 5 2

®m Priority scheduling Gantt Chart

P, P, P, P, [P,

0 1 6 16 18 19

® Average waiting time = 8.2

Operating System Concepts — 9th Edition 6.28 Silberschatz, Galvin and Gagne ©2013

=

Mf;ﬁ Example of RR with Time Quantum =4

y

Process Burst Time
P, 24
P, 3
P, 3

m Typically, higher average turnaround than SJF, but better
response

®m g should be large compared to context switch time
® g usually 10ms to 100ms, context switch < 10 usec

e —

N

ny AN
3 "

A e %!

Ap%\\\

"

“(

%

“ P

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 6.29

A /&
S
Recall: Example of RR with Time Quantum = 20
s Example: Process Burst Time

P 33343
P, g
P, 68 48 286
P, 2k

~ The Gantt chart is:
P; |Bs | Ps | By | By IP5 [Pl Py [Ba: |
0 20 28 48 68 88 108 112 125 145 153
— Waiting time for ~ P,=(68-20)+(12-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
— Average waiting time = (/2+20+85+88)/4=664

— Average completion time = (125+28+153+112)/4 = 104}

A X
Operating System Concepts — 9th Edition 6.30 Silberschatz, Galvin and Gagne ©2013

