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Chapter one: Number systems  
 

 Introduction 

A digital computer stores data in terms of digits (numbers). and proceeds in 

discrete steps from one state to the next. The states of a digital computer typically 

involve binary digits which may take the form of the presence or absence of 

magnetic markers in a storage medium, on-off switches or relays. In digital 

computers, even letters, words and whole texts are represented digitally. 

Positional number system is the type of number system in which the weight or 

value of the digit (or symbol) depends upon its position in the number. The 

positional number system is also known as weighted number system. This is 

because, in the positional number system, there is a weight associated with the 

position in the number.Therefore, in the positional number system, each digit of 

the number is weighted according to its position of occurrence in the number. 

When we travel toward left along the number, the weights increase by a constant 

factor that is equivalent to the base of the number system. Also, in the positional 

number system, a radix point (.) is used to differentiate the positions 

corresponding to integral weights from the positions corresponding to the 

fractional weights. 

Types of Positional Number Systems 

There are four very popular positional number systems, which are: 
1-Decimal system  

This system has ten coefficients (0,1,2,3,4,5,6,7,8,9) and the base of this system 

is equal to the number of coefficients, so the base of decimal is (10)  

2- Binary system  

This system has only two coefficients (0, 1) and the base is (2)  

3- Octal system  

This system has eight coefficients (0, 1, 2, 3, 4, 5, 6, 7) and the base is (8)  

4- Hexadecimal system  

The coefficients of this system are (0,1,2,3,4,5,6,7,8,9,A,B,C,E,F) and the base is 

(16) 
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Decimal System:  
The decimal system is composed of 10 numerals or symbols. These 10 symbols 

are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; using these symbols as digits of a number, we can 

express any quantity. The decimal system, also called the base-10 system because 

it has 10 digits. The decimal system is a positional-value system in which the 

value of a digit depends on its position. For example, consider the decimal 

number 453 .  

We know that the digit 4 actually represents 4 hundreds, the 5 represents 5 tens, 

and the 3 represents 3 units. In essence, the 4 carries the most weight of the three 

digits; it is referred to as the most significant digit (MSD). The 3 carries the least 

weight and is called the least significant digit (LSD).  

Consider another example, 27.35 . This number is actually equal to 2 tens plus 7 

units plus 3 tenths plus 5 hundredths, or 2 x 10 + 7 x 1 + 3 x 0.1 + 5 x 0.01. The 

decimal point is used to separate the integer and fractional parts of the number.  

Moreover, the various positions relative to the decimal point carry weights that 

can be expressed as powers of 10. This is illustrated in Figure (1), where the 

number 2745.214 is represented. The decimal point separates the positive powers 

of 10 from the negative powers. The number 2745.214 is thus equal to 

(2 x 10+3) + (7 x 10+2) + (4 x 101) + (5 x 100) + (2 x 10-1) + (1 x 10-2) + (4 x 10-3) 

 

Figure (1): Decimal position values as powers of 10. 

 

Binary System:  

In the binary system there are only two symbols or possible digit values, 0 and 

1. Even so, this base-2 system can be used to represent any quantity that can be 

represented in decimal or other number systems. In general though, it will take a 

greater number of binary digits to express a given quantity. All of the statements 
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made earlier concerning the decimal system are equally applicable to the binary 

system. The binary system is also a positional value system, wherein each binary 

digit has its own value or weight expressed as a power of 2. This is illustrated in 

Figure (2). 

 
Figure (2): Binary position values as powers of 2. 

Here, places to the left of the binary point (counterpart of the decimal point) are 

positive powers of 2, and places to the right are negative powers of 2. The number 

1011.101 is shown represented in the figure. To find its equivalent in the decimal 

system, we simply take the sum of the products of each digit value (0 or 1) and 

its positional value: 

 
Octal Number System:  

Characteristics  

• Uses eight digits, 0,1,2,3,4,5,6,7.  

•Also called base 8 number system  

• Each position in an octal number represents a 0 power of the base (8). 

Example: 80  

• Last position in an octal number represents an x power of the base (8). 

Example: 8x where x represents the last position - 1.  

 

Example  

Octal Number − 125708  
Calculating Decimal  Octal Number  Decimal Number  

Step 1  125708  ((1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 80))10  

Step 2  125708  (4096 + 1024 + 320 + 56 + 0)10  

Step 3  125708  549610  
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Hexadecimal Number System:  

Characteristics  

• Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.  

• Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E 

= 14, F = 15.  

• Also called base 16 number system.  

• Each position in a hexadecimal number represents a 0 power of the base (16). 

Example 160.  

• Last position in a hexadecimal number represents an x power of the base (16). 

Example 16x where x represents the last position - 1.  

Example  

Hexadecimal Number: 19FDE16  
Calculating 

Decimal 
Hexadecimal 

Number  

Decimal Number  

Step 1  19FDE16  ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10  

Step 2  19FDE16  ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10  

Step 3  19FDE16  (65536 + 36864 + 3840 + 208 + 14)10  

Step 4  19FDE16  10646210  

 

Number System Conversion 

There are many methods or techniques which can be used to convert numbers 

from one base to another. We'll demonstrate here the following:  
• Decimal to Other Base System  

• Other Base System to Decimal  

• Binary to Octal  

• Octal to Binary  

• Binary to Hexadecimal  

• Hexadecimal to Binary  

 

Decimal to Other Base System:  
To convert any Number from the decimal system to other systems we divided the 

Number into two parts:  

1. The Integer part:  
Steps  

Step1 − Divide the decimal number to be converted by the value of the new base.  

Step2 − Get the remainder from Step 1 as the rightmost digit (least significant 

digit) of new base number.  

Step3 − Divide the quotient of the previous divide by the new base.  



     

Logic design                                                                                                      Dr. Suhad Muhajer 

5 
 

Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the 

new base number.  

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient 

becomes zero in Step 3.  

The last remainder thus obtained will be the Most Significant Digit (MSD) of the 

new base number. 

Operation  Integer  Remainder 

(Result)  

 

29 / 2  14  1  

14 / 2  7  0  

7 / 2  3  1  

3 / 2  1  1  

1 / 2  0  1  

 

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse 

order so that the first remainder becomes the Least Significant Digit (LSD) and 

the last remainder becomes the Most Significant Digit (MSD).  

Decimal Number (29)10= Binary Number (11101) 2. 

 

2. The Fraction part:  
Multiply the decimal number by the new base number to give an integer and a 

fraction. The integer number after each multiplication will be result, Then the 

new remainder of fraction is multiplied by the new base number to give a new 

integer and a new fraction. The process is continued until the fraction becomes 0 

or until the number of digits has sufficient accuracy. 

Example  
Convert (0.6875)10 to 

binary Operation  

Integer  Fraction  Result (Integer)   

0.6875 x 2  1  0.3750  1  

0.3750 x 2  0  0.7500  0  

0.7500 x 2  1  0.5000  1  

0.5000 x 2  1  0.0000  1  

 

Then (0.687)10=(1011)2 
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Example  
Convert (153.513)10 to Octal 

 

 

Other Base System to Decimal:  

Steps  

• Step 1 − Determine the column (positional) value of each digit (this depends on 

the position of the digit and the base of the number system).  

• Step 2 − Multiply the obtained column values (in Step 1) by the digits in the 

corresponding columns.  

• Step 3 − Sum the products calculated in Step 2. The total is the equivalent value 

in decimal.  

Example  
Binary Number (11101)2  

Calculating Decimal Equivalent 

 

Binary Number (11101)2 = Decimal Number (29)10 

Example  
Convert (167)8 to Decimal  

(167)8 = 1x82 + 6x81 + 7x80  

= 64 + 48 + 7  

= (119)10 
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Binary to Octal:  

Steps  

• Step 1 − Divide the binary digits into groups of three (starting from the right) 

as in table below.  

 
 

 

• Step 2 − Convert each group of three binary digits to one octal digit.  
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Binary to Hexadecimal:  
Steps  

• Step 1 − Divide the binary digits into groups of four (starting from the right) 

as in table follow.  

• Step 2 − Convert each group of four binary digits to one hexadecimal symbol.  
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Hexadecimal to Binary:  
Steps  

• Step 1 − Convert each octal digit to a 4 digit binary number.  

• Step 2 − Combine all the resulting binary groups (of 4 digits each) into a 

single binary number.  

 

 

Signed and unsigned binary numbers 

In decimal system, generally a plus (+) sign denotes a positive number whereas a 

minus (–) sign denotes a negative number. But, the plus sign is usually dropped, 

and no sign means the number is positive. This type of representation of numbers 

is known as signed numbers. 

 
But in digital circuits, there is no provision to put a plus or minus sign, since 

everything in digital circuits have to be represented in terms of 0 and 1. Normally 

an additional bit is used as the sign bit. This sign bit is usually placed as the MSB. 
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Generally, a 0 is reserved for a positive number and a 1 is reserved for a negative 

number. 

 For example, an 8-bit signed binary number 01101001 represents a positive 

number whose magnitude is (1101001)2 = (105)10. The MSB is 0, which indicates 

that the number is positive. On the other hand, in the signed binary form, 

11101001 represents a negative number whose magnitude is (1101001)2 = 

(105)10. The 1 in the MSB position indicates that the number is negative and the 

other seven bits give its magnitude. This kind of representation of binary numbers 

is called sign-magnitude representation.  

 

 

 

Unsigned Numbers: Unsigned numbers don’t have any sign, these can contain 

only magnitude of the number. So, representation of unsigned binary numbers are 

all positive numbers only. For example, representation of positive decimal 

numbers are positive by default. We always assume that there is a positive sign 

symbol in front of every number. 

Representation of Unsigned Binary Numbers: Since there is no sign bit in this 

unsigned binary number, so N bit binary number represent its magnitude only. 

Zero (0) is also unsigned number. This representation has only one zero (0), 

which is always positive. Every number in unsigned number representation has 

only one unique binary equivalent form, so this is unambiguous representation 

technique. The range of unsigned binary number is from  0 to (2n-1). 
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Example-1: Represent decimal number 92 in unsigned binary number. Simply 

convert it into Binary number, it contains only magnitude of the given number. 

= (92)10 

= (1x26+0x25+1x24+1x23+1x22+0x21+0x20)10 

= (1011100)2 

It’s 7 bit binary magnitude of the decimal number 92. 

Example-2: Find range of 5 bit unsigned binary numbers. Also, find minimum 

and maximum value in this range. 

Since, range of unsigned binary number is from  0 to (2n-1). Therefore, range of 

5 bit unsigned binary number is from  0 to (25-1) which is equal from minimum 

value 0 (i.e., 00000) to maximum value 31 (i.e., 11111). 

Binary Arithmetic  
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Complements of Numbers 

complements are used in the digital computers in order to simplify the subtraction 

operation and for the logical manipulations. There for in Binary system 

complements has base r = 2. So the two types of complements for the binary 

system are: 

# 1' complement  

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 

1's. This is called as taking complement or 1's complement.  

 

 

Example: 

 

 

ones' complement can be used to represent negative numbers. The ones' 

complement form of a negative binary number is the complement of its positive 

counterpart, which can be obtained by applying the NOT to the positive 

counterpart.  

Note: The range of signed numbers using ones' complement in a conventional 8-

bit byte is −127 to +127. 
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1's Complement Addition  

To add two numbers represented in this system, we use the conventional binary 

addition, but it is then necessary to add any resulting carry back into the 

resulting sum.  

 
 

2' complement  

The 2's complement of binary number is obtained by adding 1 to the Least 

Significant Bit (LSB) of 1's complement of the number. 

Note: 2's complement = 1's complement + 1  

Example of 2's Complement is as follows. 

The Two's complement representation allows the use of binary arithmetic 

operations on signed integers, yielding the correct 2's complement results.  

Positive Numbers  
Positive 2's complement numbers are represented as the simple binary.  

Negative Numbers  
Negative 2's complement numbers are represented as the binary number that 

when added to a positive number of the same magnitude equals zero. 
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Note: The most significant (leftmost) bit indicates the sign of the integer; 

therefore it is sometimes called the sign bit.  

If the sign bit is zero, then the number is greater than or equal to zero, or positive.  

If the sign bit is one, then the number is less than zero, or negative.  

 
For example: 

 
2's Complement Addition  
Two's complement addition follows the same rules as binary addition. 

 
2's Complement Subtraction  
Two's complement subtraction is the binary addition of the minuend to the 

2's complement of the subtrahend (adding a negative number is the same as 

subtracting a positive one). 
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Binary coded decimal (BCD) codes. 

Code is a system of rules to convert information- such as a letter, word, sound, 

image, or gesture- into another form or representation, sometimes shortened or 

secret, for use it to security reasons.  

There are many types of codes: -  

1) Binary-Coded-Decimal Code (BCD – 8421) (Weighted Code)  
If each digit of a decimal number is represented by its binary equivalent, the result 

is a code called binary-coded-decimal (hereafter abbreviated BCD). Since a 

decimal digit can be represented from (0 – 9), four bits are required to code each 

digit (the binary code for 9 is 1001).  

Table below gives the four‐bit code for one decimal digit. 

 
Advantages of BCD Code  

 It is very similar to decimal system.  

 We need to remember binary equivalent of decimal numbers 0 to 9 only.  

 

Disadvantages of BCD Code  
 The addition and subtraction of BCD have different rules.  

 The BCD arithmetic is little more complicated.  

 BCD needs more number of bits than binary to represent the decimal number. 

So BCD is less efficient than binary.  

 

To illustrate the BCD code, take a decimal number such as 874. Each digit is 

changed to its binary equivalent as follows: 

 
As another example, let us change 943 to its BCD-code representation: 
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Example: Convert 0110100000111001 (BCD) to its decimal equivalent.  

Solution: Divide the BCD number into four-bit groups and convert each to 

decimal. 

 
2) Gray Code (non-weighted code)  
It is the non-weighted code and it is not arithmetic codes. That means there are 

no specific weights assigned to the bit position. It has a very special feature that, 

only one bit will change each time the decimal number is incremented as shown 

in fig. As only one bit changes at a time, the gray code is called as a unit distance 

code. The gray code is a cyclic code. Gray code cannot be used for arithmetic 

operation.  

Applications of Gray Code  

Gray code is popularly used in the shaft position encoders.  

A shaft position encoder produces a code word which represents the angular 

position of the shaft. 

Example: Convert (101011)2 to Gray code.  

Solution: 
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Gray to Binary Conversion  
Steps  
Step1: The MSB in the left is the MSB in binary number. In other word they are  

The same.  

Step2: Add the first digit of the binary number to the second digit in Gary code,  

the carry is ignored , in other word , take XOR operation between them .  

Step3: Generally working from the left to right digit, the n'th digit in the binary  

number is formed from summing the (n+1)'th digit in the binary number  

with n'th bit in the Gray code . 

 

 
Binary to Gray Conversion  
Steps:  

Step1: The MSB digit in Gary code is the same as corresponding digit in the  

binary number.  

Step2: going from left to right , add each adjacent pair of binary digit to get the  

next Gray digits , regardless carries .  

Example: Convert the following binary number 100110 to Gray code? 

 
ASCII Character Code 

The standard binary code for the alphanumeric characters is called ASCII 

(American Standard Code for Information Interchange). It uses 7 bits to code 128 

characters, as shown in the table. The seven bits of the code are designed by A0 

through A6, with A6 being the most significant bit. For example, the letter A is 

represented n ASCII as ( 1000001 ). The ASCII code contains 94 characters that 

can print and 34 nonprinting used in control functions. The printing characters 

consist of 26 uppercase letters, the 26 lowercase letters, 10 numerals, and 32 

special printable character such as %, @ and $. 

Example: What are the character corresponding to the ASCII code? 

( 10010101001111100100010011100100000100010010001011010110 )ASCII 

Sol 

( 1001010 1001111 1001000 1001110 0100000 1000100 1000101 1010110 ) 

ASCII 
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Chapter three: Karnaugh map (K-map) 

Introduction 

     A karnauph map provides a systematic method for simplifying Boolean 

expressions and, if properly used, will produce the simplest SOP or POS 

expression possible, known as the minimum expression. As you have seen , the 

effectiveness of the algebraic simplification depends on your familiarity with the 

laws, rules , and theorems of Boolean algebra and the on your ability to apply 

them. The Karnauph map on other hand, provide a "cookbook" method for 

simplification. other simplification techniques include the Quine- McClusky 

method and the Espresso algorithm.  

 Another method of simplification of Boolean function is Karnaugh – Map (K-

Map). This map is a diagram made of squares, each square represent one 

minterms, and there are several types of K-|Map depending on the number of 

variables in Boolean function. 

1. Two, three, and four-variable Karnaugh map. 

Two variable Karnauph map 

 The 2-variable karnauph map is an array of four cells, as shown in table(1) 

bellow.  

 In this case A and B are used for the variables although other letters could 

be used. 

 Binary values of A are along the left side and the values of B are across the 

top. The value of a given cell is the binary values of A at the left in the 

same row combined with the value of B at the to in the same column.  

 

For example, the cell in the upper left corner has a binary value 00 and the cell 

in the lower right corner has a binary value 11. Table(2) shows the standard 

product terms that are represented by each cell in the 2-varable Karnaugh map. 
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three- Variable Karnauph map 

 The 3-variable karnauph map is an array of eight cells, as shown in table 

(1) bellow. 

 In this case A, B and C are used for the variables although other letters 

could be used. 

 Binary values of A and B are along the left side and the values of C are 

 across the top. 

 The value of a given cell is the binary values of A and B at the left in the 

 same row combined with the value of C at the to in the same column. 

For example, the cell in the upper left corner has a binary value 000 and the cell 

in the lower right corner has a binary value 101. Table (2) shows the standard 

product terms that are represented by each cell in the 3-varable Karnaugh map. 

 
Four- Variable Karnauph map 

The 4-variable karnauph map is an array of sixteen cells, as shown in table (1) 

bellow . 

 In this case A, B C, and D are used for the variables although other letters 

could be used. 

 Binary values of A and B and C and D are along the left side and the values 

of C are across the top. 

 The value of a given cell is the binary values of A and B at the left in the 

same row combined with the value of C and D at the to in the same column. 

 For example, the cell in the upper right corner has a binary value 0010 and the 

cell in the lower right corner has a binary value 1010. Table (2) shows the 

standard product terms that are represented by each cell in the 4-varabl Karnaugh 

map. 
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2. Minimum SOP expressions using the Karnaugh map. 

As stated in the last section, the Karnaugh map is used for simplifying Boolean 

expressions to their minimum form. A minimized SOP expression contains the 

fewest possible terms with the fewest possible variables per term. 

Generally, a minimum SOP expression can be implemented with fewer logic 

gates than a standard expression. 

- Mapping a standard SOP Expression 

 For an SOP expression in standard form, a 1 is placed on the Karnaugh 

map for each product term in the expression. Each 1 is placed in a cell 

corresponding to the value of a product term. For example, for the 

product term ABC, a 1 goes in the 101 cell on a 3-variablemap. 

 When an SOP expression is completely mapped, there will be a number of 

1's on the Karnaugh map equal to the number of product terms in the 

standard SOP expression. 

 The cells that do not have a 1 are the cells for which the expression is 0. 

  Usually, when working with SOP expressions, the 0's are left off the map. 

 

The following steps and the illustration in the next figure show the mapping 

process. 

Step1: Determine the binary value of each product term in the standard SOP 

expression. After some practice, you can usually do the evaluation of terms 

mentally. 

Step2: As each product term is evaluated, place a 1 on the Karnaugh map in the 

cell having the same value as the product term. 
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Karnaugh Map Simplification of SOP expressions 

The process that results in an expression containing the fewest possible terms 

with the fewest possible variables is called minimization. After an SOP 

expression has been mapped , a minimum SOP expression is obtained by 

grouping the 1's and determining the minimum SOP expression from the map. 

 grouping the 1's : you can group 1s on the Karnaugh map according to the 

following rules by enclosing those adjacent cells containing 1s.the goal is to 

maximize the size of the groups and to minimize the number of groups. 

1. A group must contain either 1,2,4,8 , or 16 cells,which are all powers of two. 

In the case of a 3-variables map,2^3=8 cells is the maximum group. 

2. Each cell in a group must be adjacent to one or more cells in that some group, 

but all cells in the group do not have to be adjacent to each other. 

3. always include the largest possible number of 1s in a group in accordance with 

rule 1. 

4. Each1 on the map must be included in at least one group. The 1s already in a 

group can be included in another group as long as the overlapping groups include 

non common 1s. 
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Example: group the 1s in each of the Karnauph maps in the following 2-varible 

map. 

 
Solution: the grouping are shown the next figure. In some cases, there may be 

more than one way to group the1s to form maximum grouping. 

 
Example: group the 1s in each of the Karnauph maps in the following 4-

variable map 

 
Solution: the grouping are shown the next figure. In same cases, there may be 

more than one way to group the1s to form maximum grouping. 
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Example: Simplify the following SOP expression on a Karnaugh map: 

 
Solution:  

 
Example: Determine the simply expression by the truth table below using 

Karnaugh map method. 
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Solution: 

 

 

Determining the minimum SOP Expression from the map 
When all the 1s representing the standard product terms in an expression are 

properly mapped and grouped, the process of determining the resulting minimum 

SOP expression begins. The following rules ate applied to find the minimum 

product terms and the minimum SOP expression: 

1. Group the cell that have 1's. Each group of cells containing 1's creates one 

product item composed of all variables that occur in only one form (either 

uncomplemented or complemented) within the group. Variable that occur 

both uncomplemented and complemented within the group are eliminated . 

these are called contradictory variables 
2. Determine the minimum product term for each group. 

a. For a 2-Variable map 

(1) A 1-cell group yields a 2-variable product term. 

(2) A 2-cell group yields a 1-variable product term. 

(3) An 4-cell group yields a value of 1 for the expression. 

b. For a 3-Variable map 

(1) A 1-cell group yields a 3-variable product term . 

(2) A 2-cell group yields a 2-variable product term. 

(3) A 4-cell group yields a 1-variable product term. 

(4) An 8-cell group yields a value of 1 for the expression 

c. For a 4-Variable map 

(1) A 1-cell group yields a 4-variable product term. 

(2) A 2-cell group yields a 3-variable product term. 

(3) A 4-cell group yields a 2-variable product term. 

(4) An 8-cell group yields a 1-variable term. 

(5) A 16-cell group yields a value of 1 for the expression. 

 

3. When all the minimum product terms are derived from the Karnaugh map, they 

are summed to form the minimum SOP expression. 
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Example: Determine the product terms for the Karnaugh map in figure bellow, 

and write the resulting minimum SOP expression. 

 
Solution: Eliminate variables that are in a grouping in both complemented and 

uncomplemented forms. In the above figure, 
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Example: Determine the product terms for the Karnaugh map in two figures 

bellow, and write the resulting minimum SOP expression. 

 
Example: Determine the product terms for the Karnaugh map in two figures 

bellow, and write the resulting minimum SOP expression. 

 

 
Solution: the resulting minimum product term for each group shown in figure(a) 

and (b) are: 
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Simply the following Boolean functions using K –Map? 
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Chapter two: Combinational Logic Circuits and switching algebra and logic 

gates 

Introduction  

 Combinational Logic Circuits are memoryless digital logic circuits whose output 

at any instant in time depends only on the combination of its inputs.  

Or the combinational logic circuits or time-independent logic circuits in digital 

circuit theory can be defined as a type of digital logic circuit implemented using 

Boolean circuits, where the output of logic circuit is a pure function of the present 

inputs only. 

 
Development of a truth table. 

What is a Truth Table? 

 Definition: A truth table is a tabular representation that lists all possible 

input combinations to a logic gate or circuit, along with their corresponding 

outputs. 

 Purpose: It's used for analysing and predicting the behaviour of digital 

circuits, making it easier to understand how changes in input affect the 

output. 

 
The operation of the AND, OR, and NOT logic operators can be formally 

described by using a truth table. A truth table is a two-dimensional array where 

there is one column for each input and one column for each output (a circuit may 

have more than one output). Since we are dealing with binary values, each input 

can be either a 0 or a 1. We simply enumerate all possible combinations of 0’s 

and 1’s for all the inputs.  

Two-Valued Boolean Algebra  

Two-valued Boolean algebra is defined on a set of only two elements, S = {0,1}, 

with rules for two binary operators (+) and (.) and inversion or complement as 

shown in the following operator tables at Figures 1, 2, and 3 respectively. 
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These rules are exactly the same for as the logical OR, AND, and NOT 

operations, respectively.  

Using a truth table is one method to formally describe the operation of a circuit 

or function. The truth table for any given logic expression (no matter how 

complex it is) can always be derived. Examples on the use of truth tables to 

describe digital circuits are given in the following sections. Another method to 

formally describe the operation of a circuit is by using Boolean expressions or 

Boolean functions. 

The basic building blocks of a computer are called logical gates. Gates are basic 

circuits that have at least one (and usually more) input and exactly one output. 

Input and output values are the logical values true and false. In computer 

architecture it is common to use 0 for false and 1 for true. Gates have no memory. 

The value of the output depends only on the current value of the inputs. A useful 

way of describing the relationship between the inputs of gates and their output is 

the truth table. In a truth table, the value of each output is tabulated for every 

possible combination of the input values. We usually consider three basic kinds 

of gates, AND-gates, OR-gates, and NOT-gates (or Inverters). 

 

Basic logic Gates  

1) AND Gate: -  
The AND operation is represented by a dot (.) or by the absence of an operator. 

E.g. A.B=F AB=F are all read as A AND B=F. the logical operation AND is 

interpreted to mean that F=1 if A=1 and B=1 otherwise F=0 
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2) OR Gate: -  
The OR operation is represented by a (+) sign for example, A+B=F is interpreted 

as A OR B=F meaning that F=1 if A=1 or B=1 or if both A=1 and B=1. If both 

A and B are 0, then F=0. 

 
3) NOT Gate or INVERTER: -  
NOT gate is also known as Inverter. It has one input A and one output Y. 

 
 

Combined gates  
Sometimes, it is practical to combine functions of the basic gates into more 

complex gates, for instance in order to save space in circuit diagrams. In this 

section, we show some such combined gates together with their truth tables.  
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1) NAND Gate: -  

 

 
 

2) NOR Gate:  
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3) Exclusive OR Gate(Ex-OR/ XOR): -  

 
 

4) Exclusive NOR Gate(Ex-NOR/ XNOR): -  
 

 
Digital Logic Gates Summary  

The following logic gates truth table compares the logical functions of the 2-

input logic gates. 
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 Implementing Combinational Logic.  

From a Boolean Expression to a Logic Circuit. 

  
Switching algebra. 

Switching algebra is also known as Boolean Algebra. It is used to analyze 

digital gates and circuits It is logical to perform a mathematical operation on 

binary numbers. 

 A Boolean Variable takes the value of either 0 (False) or 1 (True). 

 Symbols are used to represent Boolean variables e.g. A, B, C, X, Y, Z 
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 There are three basic logic operations AND, OR, NOT 

 The Boolean Operators are • + ‾ 

o A + B means A OR B 

o A • B means A AND B 

o A means NOT A 

 Nodes in a circuit are represented by Boolean Variables 

Properties of switching algebra 

These are the simple Boolean postulates. We can verify these postulates easily, 

by substituting the Boolean variable with ‘0’ or ‘1’.  

Basic Laws of Boolean Algebra  

Three basic laws of Boolean Algebra: Commutative law, Associative law and 

Distributive law. 

 

• Commutative Law  

If any logical operation of two Boolean variables give the same result irrespective 

of the order of those two variables, then that logical operation is said to be 

Commutative. The logical OR & logical AND operations of two Boolean 

variables A & B are shown below  

A + B = B + A 

A.B = B.A 

Commutative law states that changing the sequence of the variables does not have 

any effect on the output of a logic circuit. Remember, Boolean Algebra as applied 

to logic circuits, the commutative law can applied to OR and AND gate makes 

no difference , as show in next figures. 
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• Associative Law  

If a logical operation of any two Boolean variables is performed first and then the 

same operation is performed with the remaining variable gives the same result, 

then that logical operation is said to be Associative. The logical OR & logical 

AND operations of three Boolean variables x, y & z are shown below.  

A + (B + C) = (A + B) + C 

A.(B.C) = (A.B).C 

The follows figures show how to applied the associative low to 2-input OR gates 

and 2-input And gates. 

 
 

• Distributive Law  

If any logical operation can be distributed to all the terms present in the Boolean 

function, then that logical operation is said to be Distributive. The distribution of 

logical OR & logical AND operations of three Boolean variables x, y & z are 

shown below. 

A. ( B+ C) = A.B + A.C 

The follows figures show how to applied the distributive low to 2-input OR gates 

and 2-input And gates. 

 

 
 

Complement Law 

This law states that in case a complement is added to any variable, then it would 

give one, whereas when we multiply this variable with its own complement, then 

it would result in ‘0’, i.e., 

 A + A’ = 1 

 A.A’ = 0 
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Rules of Boolean Algebra  

The following table lists the 12 basic rules that are useful in manipulating 

and simplifying Boolean expressions.  

 
 

Rule1: A + 0 = A (Identity Law)  

The variable ORed with 0 is always equal to the variable . This rule is illustrated 

in the following Figure , where the lower input is fixed at 0. 

 
Rule 2 : A + 1 = 1 (NULL Elements Law)  

A variable ORed with 1 is always equal to 1. This rule is illustrated in the 

following Figure , where the lower input is fixed at 1. 

 
Rule 3: A .0 = 0 (NULL Elements Law)  

A variable ANDed with 0 is always equal to 0. This rule is illustrated in the 

following Figure , where the lower input is fixed at 0. 
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Rule 4: A .1 = A (Identity Law)  

A variable ANDed with 1 is always equal to the variable . This rule is illustrated 

in the following Figure , where the lower input is fixed at 1. 

 
Rule 5: A + A= A (Idempotent Law)  

A variable ORed with itself is always equal to the variable . This rule is illustrated 

in the following Figure, where both inputs are the same variable . 
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logic gates 
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Manipulating Algebraic Functions 

   Boolean algebra deals with binary variables and logic operation. A Boolean 

Function is described by an algebraic expression called Boolean expression 

which consists of binary variables, the constants 0 and 1 and the logic operation 

symbols. Consider the following example: 

 
Truth Table Formation  
A truth table represents a table having all combinations of inputs and their 

corresponding result. It is possible to convert the switching equation into a truth 

table. For example consider the following switching equation. 

 

 
 

Simplification of Boolean Functions  

Many times in the application of Boolean algebra, you have to reduce a particular 

expression to its simplest form or change its form to a more convenient one to 

implement the expression most efficiently.  the approach taken un this section is 

to use the basic laws, and theorems of Boolean algebra to manipulate and simplify 

an expression. This method depends on a thorough knowledge of Boolean algebra 

and considerable practice in its application. The following two theorems are used 

in Boolean algebra.  

• Duality theorem  

• DeMorgan’s theorem  

 

DeMorgan’s Theorem  

This theorem is useful in finding the complement of Boolean function. It states 

that the complement of logical OR of at least two Boolean variables is equal to 

the logical AND of each complemented variable. The two theorems suggested by 

De-Morgan which are extremely useful in Boolean Algebra are as following. 
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 Theorem 1 

 
 

The left hand side (LHS) of this theorem represents a NAND gate with input A 

and B where the right hand side (RHS) of the theorem represents an OR gate with 

inverted inputs.  

 This OR gate is called as Bubbled OR.  

 
Table showing verification of the De-Morgan’s first theorem 
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 Theorem 2 

 
The LHS of this theorem represented a NOR gate with input A and B whereas 

the RHS represented an AND gate with inverted inputs.  

 This AND gate is called as Bubbled AND.  

 
Table showing verification of the De-Morgan’s second theorem 

 
 
Examples: Apply DemMorgan's theorems to the following expression: 

A+BC 

=A+B+C 

=A.B.C 

=A.B.C 
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Ex2:  C+(A+B) 

         C. (A+B)  

         C.(A.B)  

         C.(A.B) 

          A.B.C 

 

Examples: simplify the following Boolean functions using laws and rules: 

1. F=AB+AB  

=A(B+B)  

=A.1=A 

 

2. F=(A+B).(A+C) 

   =AA+AC+AB+BC 

   =A+AC+AB+BC 

   =A(1+C)+AB+BC 

   =A+AB+BC 

   =A(1+B)+BC 

   =A+BC 

 

3. F=X(X+Y) 

  =XX+XY 

  =0+XY 

  =XY 
 

4. F=AB(C+AC)  

=ABC+ABAC 

=ABC+(AA)BC 

=ABC+0.BC 

           =ABC 
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Home work: Draw the logic circuit before and after simplification. 
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Simplifying Logic Circuits  

Two methods for simplifying  

 Algebraic method (use Boolean algebra theorems)  

 Karnaugh mapping method as explained in chapter three. 

 

 Standard form of Boolean Expressions 

One way to express Boolean function is in standard form. In this form, the terms 

form the function may contain one, two, or any number of literals, there are two 

types of standard form: 

1– Sum of Product: The Sum of Product expression is equivalent to the logical 

AND fuction which Sums two or more Products to produce an output. 

Some examples are: 

 
In an Pos expression, a single overbar cannot extend over more than one variable 

in a term can have an overbar. for example, an SOP expression can have the term: 

 
 
 

Domain of a Boolean Expression  

The Domain of a general Boolean expression is the set of variables contained in 

the expression in either complement or un complement form. For example, the 

domain of the expression    is the set of variables A,B ,C and the 

domain of the expression   is a set of variables  

A,B,C,D,E. 

 

And / Or implementation of an SOP expression  
Implementation an SOP expression is simply require  

1- ORing the output of two or more AND gates. A product term is produced 

by an AND operation.  

2- And the sum (addition) of two or more product terms is produced by an OR 

operation.  

Note: Therefore, an SOP expression can be implemented by AND-OR logic in 

which the outputs of a number (equal to the number of product terms in the 

expression) of AND gates connect to the inputs of an OR gate, as show un the 
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next figure, for the expression AB+BCD+AC. the output X of the OR gate equals 

the SOP expression. 

 

 
Conversion of a General Expression to SOP Form  
Any logic expression can be changed into SOP form by applying Boolean algebra 

techniques. For example, the expression A(B+CD) can be converted to SOP form 

by applying the distributive law: A (B +CD)= A +ACD 

Example: convert each of the following Boolean expression to the SOP from:  

(a) AB + B(CD + EF) 

Solution:  

AB +BCD +BEF 

 
 

Standard SOP 
So far, you have been SOP expressions in which some of the product terms do 

not contain all of variables in the domain of the expression. For example, the 

expression  variables has a domain made up of the 

A ,B ,C and D. A Standard SOP expression is one in which all the variables in 

the domain appear in each product term in the expression. 

For example ,  is a standard SOP expression . 

Standard SOP expressions are important in constructing truth tables, and in the 

Karnaugh map simplification method, which is covered in next chapter. 
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Converting Product Terms to Standard SOP  

Each product term in an SOP expression that does not contain all the variables in 

the domain can be expanded to standard form to include all variables in the 

domain and their complements. As stated in the following steps, a nonstandard 

SOP expression is converted into standard from using Boolean algebra Rule 6  

: a variable added to its complement equals 1. 
Step1: Multiply each nonstandard product term by a term made up of the sum of 

a missing variable and its complement. This results in two product terms. As you 

know, you can multiply anything by 1 without changing its value.  

Step2: Repeat step1 until all resulting product terms contain all variables in the 

domain in either complemented or uncomplemented form. In converting a 

product term to standard form, the number of product terms is doubled for each 

missing variable as shows in following example: 

Example: Convert the following expression into standard SOP form: 
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Binary Representation of a Standard Product Term  

A standard product term is equal to 1 for only one combination of variable values. 

Example: ABCD is equal to 1 when A=1, B=0, C=1 and D=0 as shown below: 

        ABCD= 1.0.1.0 =1.1.1.1=1 

In this case, the product term has a binary value of 1010 (decimal ten). 
A product term is implement with an AND gate whose output is 1 only if each of 

its inputs is 1. inverters are used to produce the complements of the variables as 

required. 

Example: determine the binary value for which the following Standard SOP 

expression is equal 1:  

Solution:  
The first term ABCD is equal to 1 when A=1, B=1, C=1 and D=1, so  

A.B.C. D=1.1.1.1=1 

The second term  is equal to 1 when A=1 , B=0 ,C=0 and D=1 , so 

 
 

The third term  is equal to 1 when A=0 , B=0 ,C=0 and D=0 , so 

 
Note. The Sop expression equals 1 when any or all of the three product terms 

is 1. 
 

2– Product of Sum: When two or more sum terms are multiplied, the resulting 

expression is a product-of-sums (POS).  

Examples  

 
The Product of Sum expression is equivalent to the logical OR-AND function 

which gives the AND Product of two or more OR Sums to produce an output. 

 

Implementation of a POS expression  

Implementing a POS expression simply require ANDing the outputs of two or 

more OR gates. The next figure shows the expression (A+B)(B+C+D)(A+C). the 

output X of the AND gate equals the POS expression. 
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The Standard POS Form  
So far, you have seen POS expression in which some of the sum terms do not 

contain all of the variables in the domain of the expression. For example , the 

expression , has the domain 

made up of the variables ,A ,B ,C and D . 

 
 
 
Converting a Sum Term to Standard POS  

Each sum term in a POS expression that does not contain all the variables in the 

domain can be expanded to standard form to include all variables in the domain 

and their complements. As stated in the following steps, a nonstandard POS 

expression is converted into standard form using Boolean algebra Rule8 

:A variable multiplied by its complement equal 0. 

Step1: Add to each nonstandard product term a term made up of the product of 

,the missing variable and its complement. This results in two sum terms. As you 

know ,you can add 0 to anything without changing its value.  
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Step2: Apply rule12 : A +BC =(A+B)(A+C)  

Step3: Repeat Step 1 until al resulting sum terms contain all variables in the 

domain in either complement or un complemented form. 

Example: Convert the following Boolean expression into Standard POS form. 

 
Solution: the domain of this POS expression is A,B,C,D. take one term at a time,  

The first term  A+B+C   D or D , so add DD and apply rule12 as follows: 

 

 
 

 

Binary representation of SOP 
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A POS expression is equal to 0 only if one or more of the sum terms in the 

expression is equal to 0. 

 

Example: Determine the binary values of the variables for which the 

following standard POS expression is equal to 0: 
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Designing Combinational system. 

Design 1-bit and 2-bits full adder design 1-bit subtractor 

Basic Adders 

Adders are important in computers and also in other types of digital systems in which 

numerical data are processed. An understanding of basic adder operation is 

fundamental to the study of digital systems. In this section, the half-adder and the full 

adder are introduced. 

The One-bit Full-Adder (FA) is used widely in systems with operations such as 

counter, addition, subtraction, multiplication and division etc. It is the basic core 

component of Arithmetic-Logic-Unit (ALU).  

Half adder (HA) 

Half adder is a combinational logic circuit with two input and two output. The half 

adder circuit is designed to add two single bit binary number A and B. It is the basic 

building block for addition of two single bit numbers. This circuit has two outputs 

carry and sum. 

 
Half Adder Truth Table 

 
 

Half Adder Logic circuit  
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The Boolean expression for the (C0) output is C0=A.B which represent AND gate 

The Boolean expression I s  output  which represent XOR gate. 

We Can also simplify HA function using Karnough Map. 
 

Full Adder is the adder which adds three inputs and produces two outputs. The first 

two inputs are A and B and the third input is an input carry as C-IN. The output carry 

is designated as C-OUT and the normal output is designated as S which is SUM. A 

full adder logic is designed in such a manner that can take eight inputs together to 

create a byte-wide adder and cascade the carry bit from one adder to the another. 

 
 

 Full Adder Truth Table: 
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Implementation of Full Adder using Half Adders 2 Half Adders and a OR gate is 

required to implement a Full Adder. 

 
 

Subtractor 

We can construct a one-bit subtractor circuit similar to the method used for 

constructing the full adder. 

half subtractors 

You will find that adders and suntractors are very similar. You use half subtractors 

and full subtractors just as you use half and full adders. Converting the rules to truth 

table from as in bellow. 

 
On the input side,(B) is subtracted from(A) to give output Di(Diffrence). If B is larger 

then A , we need a borrow , which is shown in the column labeled Bo (borrow out ). 

* form the truth table, we can determine the Boolean expression for the half-

subtractor. 

 

The expression for the Di column is : , this is the same as for the half adder . 

The Boolean expression for the Bo column is       , combining these two expression 
in a logic diagram gives the logic circuit for a half subtractor. 
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 A full subtractor is a combinational circuit that performs subtraction of two bits, 

one is minuend and other is subtrahend, taking into account borrow of the previous 

adjacent lower minuend bit. This circuit has three inputs and two outputs. The three 

inputs A, B and Bin, denote the minuend, subtrahend, and previous borrow, 

respectively. The two outputs, D and Bout represent the difference and output borrow, 

respectively. 

 
Truth table 

 

 



Dr. suhad muhajer kareem 

5 
 

Using Adders For Subtractor 

With A few a little thinks we can use as adder to also do subtraction. There is a 

mathematical technique that helps us use an adder to do binary subtraction. 

 
In this special technique the steps are first to first wire the 1's complement of the 

number being subtracted (change all 1's to 0's and all 0'sto 1's) and then add. 

Now let us us adders to do binary subtraction in this example, the temporary answer 

to this addition is shown as (10011). Next, the last carry on the left I carried around to 

the 1's place. This is called an end-around carry. When the end around carry is added 

to the rest of the number, the result is the difference between the original binary 

numbers, (1010) and (0110). The an swer to this problem is 0100. 
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Comparators 

The comparison of two numbers is an operations that determines if one number is 

greater then, less than, or equal to other number. 

A Magnitude comparator: is a combinational circuit that compares two numbers A 

and B , and determines there relative . The outcome of the comparison is specified by 

three binary variables that indicate whether A > B , A=B or A <B . 

 

 
1-Bit Magnitude Comparator  

A comparator used to compare two bits is called a single-bit comparator. It consists 

of two inputs each for two single-bit numbers and three outputs to generate less than, 

equal to, and greater than between two binary numbers.  

The truth table for a 1-bit comparator is given below. 

 

by using logic circuit 
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2-Bit Magnitude Comparator 

A comparator used to compare two binary numbers each of two bits is called a 2-bit 

Magnitude comparator. It consists of four inputs and three outputs to generate less 

than, equal to, and greater than between two binary numbers.  

The truth table for a 2-bit comparator is given below. 
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Equality Relation 

We say that if the number A equal to B we are implement an XNOR gate to do this 

state, but with one bit number, then now about numbers with n- bits ? 

Note: the two numbers are equal if all pairs of significant digit are equal: 

 
That means for the equality condition being true (equal 1) if all equality 

relation of each pair must equal to 1, this dictates AND gate to combine the 

outputs to gather to get the final output 1. 

 

Therefore Equality Relation:- 

 
 
Greater than relation 
If the corresponding digit of is (1) and that of B is (0) , we conclude that A 
>B. 
Then How can we implement a comparator circuit to do this comparison: 

1- if N= 2 
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2- if N= 3 
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 (A) Decoder:  

A decoder is a combinational circuit that converts coded information, such as binary, 

into a recognizable form, such as decimal.  

In its general form : a decoder has n input lines to handle n bits and from one to 2n 

output lines to indicate the presence of one or more n-bit combinations. 

 

Block diagram 

 

2-to-4  line decoder 

The block diagram of 2 to 4 line decoder is shown in the figure A and B are the two 

inputs where D0 through D3 are the four outputs. Truth table explains the operations 

of a decoder. It shows that each output is 1 for only a specific combination of inputs.  

 

We can design 2 to 4 line decoder by using the following truth table: 
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 A 3-to-8 line decoder 

 
 

The 3-to-8 line decoder consists of three input variables and eight output lines. Note 

that each of the output lines represents one of the minterms generated from three 

variables. The internal combinational circuit is realized with the help of INVERTER 

gates and AND gates. The operation of the decoder circuit may be further illustrated 

from the input output relationship as given in the above table. Note that the output 

variables are mutually exclusive to each other, as only one output is possible to be 

logic 1 at any one time.  
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Application of decoder 

Example 1. Implement the function F (A,B,C) = Σ (1,3,5,6).  

Solution. Since the above function has three input variables, a 3-to-8 line decoder may 

be employed. It is in the sum of the products of the minterms m1, m3, m5, and m6, 

and so decoder output D1, D3, D5, and D6 may be OR-gated to achieve the desired 

function. The combinational circuit of the above functions is shown in the following 

Figure . 

 

Encoder 

Encoder is a combinational circuit which is designed to perform the inverse operation 

of the decoder. An encoder has n number of input lines and m number of output lines. 

The encoder is also a combinational logic circuit; it converts information, such as a 

decimal number or an alphabetic character, into some coded form such as binary or 

BCD. 

Block diagram 

 

 four to two line encoder and its truth table. 
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 Eight to binary encoder 

The octal-to-binary encoder consists of eight inputs, one for each of the eight digits, 

and three outputs that generate the corresponding binary number. It is constructed 

with OR gates whose inputs can be determined from the truth table. The lower-order 

output bit Z is 1 if the input octal digit is odd. Output X is 1 for octal digits 4, 5, 6 or 

7. Note that D0 is not connected to any OR gate, the binary inputs are all 0's. 
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Multiplexer and Demultiplexer 
 

 

 

 

Logic symbol of Multiplexer 
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Types of multiplexer 
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b. 8 t0 1 Multiplexers

 

Block diagram of 8 to 1 Multiplexer 
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Truth Table of 8 to 1 MUX 

 

Logical Circuit Diagram of 8X1 MUX 
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c. 16 to 1 multiplexers 

The 16 to 1 multiplexer has 16 inputs and 4 control signals. 
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