
Chapter One

Course objectives

This course aims to make the student capable of
understanding and writing different data structures
as:

• Array, ArrayList

• String

• Linked List

• Stack

• Queue

Introduction

What is Data Structures ?

• A collection of basic data types is called data
structure.

• A collection of data elements whose logical
organization reflects a relationship among the
elements.

• Abstract way to organize information.

Classification of data structure

Classification according to structure

1. Linear data structures: In these data structures the
elements form a sequence, such as array, Linked Lists, Stacks
and Queues .

2. Non-Linear data structures: In these data structures
the elements do not form a sequence, such as
Trees(example of hierarchical collection) and
Graphs(example of Group):

3. A hierarchical collection is a group of items divided
into levels. An item at one level can have successor
items located at the next lower level.Example: Tree

2. Group: A nonlinear collection of items that are

unordered is called a group. Example : Sets and
Graphs.

Classification according to Allocation memory

1. Static memory allocation means the program must obtain its

space before the execution and cannot obtain more while

or after execution. Example: Arrays

2. Dynamic memory allocation is the ability for a program to

obtain more memory space at execution time to hold new

nodes and to release space no longer needed .Example :

Array lists, Linked Lists, Stacks, Queues and Trees

The data structures can be viewed in two ways, physically and
logically.
• The physical data structure refers to the physical arrangement

of the data on the memory.
• The logical data structure concerns how the data "seem" to

be arranged and the meanings of the data elements in
relation to one another.

Data Structures Operations

Following the operations that can be performed on the data
structures:

1. Traversing: It is used to access each data item exactly once.

2. Searching: It is used to find out the location of the data item.

3. Inserting: It is used to add a new data item in the given collection

of data items.

4. Deleting: It is used to delete an existing data item from the given

collection of data items.

5. Sorting: It is used to arrange the data items in some order i.e. in

ascending or descending order.

Array Data Structure

An array is :
• Linear data structure: means organize in memory as linear order.
• homogeneous structure: all components in the structure are of the

same data type.
• finite structure : indicates that there is a last element.
• fixed size structure: mean that the size of the array must be known

at compile time.
• contiguously data structure: means that there is a first element, a

second element, and so on.
• The component selection mechanism of an array is direct access,

which means we can access any element directly (by using specific
equation), without first accessing the preceding elements. The
desired element is specified using an index, which gives its relative
position in the collection.

• A one-dimensional array is homogeneous structure, it can be
visualized as a list. Logical structure for one-dimensional array
with 15 elements as shown below:

• Physical structure for one-dimensional array with five
elements will appear in memory as shown below:

We can find out the location of any element by using following
formula:

Loc (ArrayName [k]) = Loc (ArrayName [1]) + (k-LB)* w

where:

Loc (ArrayName [k]): is the address of the kth element of ArrayName.

Loc (ArrayName [1]): is the base address or address of first element of
ArrayName.

W : is the number of bytes taken by one element(element size).

LB : is the lower bound.

Example1 : Suppose we want to find out Loc (A [3]) that store
as the following figure in two case (LB=1 and LB=0), for it, we
have: Base(A)=1000, w = 2 bytes.

in Case LB = 1
 After putting these values in the given formula, we get:
LOC(A[3])=1000 + 2 (3 – 1)
= 1000 + 2 (2)
= 1000 + 4
= 1004

If Case LB = 0
 After putting these values in the given formula, we get:
LOC(A[3])=1000 + 2 *3
= 1000 + 6
= 1006

Two-dimensional array

• A two-dimensional array is also homogeneous
structure, it can be visualized as a table consisting
of rows and columns.

• The element in a two-dimensional array is
accessed by specifying the row and column
indexes of the item in the array.

• Logical Level for two-dimensional array with 3(0-
2) rows and 4(0-3)column elements will appear
as shown below:

In the computer memory, all elements are stored linearly using

contiguous addresses. Therefore, in order to store a two-

dimensional matrix, two dimensional address space must be

mapped to one-dimensional address space.

There Two methods for arranging Two or

multidimensional arrays in memory:

1. Row-major order

2. Column-major order

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/RAM

For example the physical structure for array with 3X3 elements will appear in memory
as shown below in two methods:

• In row-major order:
consecutive elements of the rows of the array are contiguous
in memory. Used in C/C++, PL/I, Pascal, Python , C# .Net,
Java.

• in column-major order:
consecutive elements of the columns are contiguous.Used in
Fortran, OpenGL , MATLAB

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/MATLAB

• Example: The following array: A would be
stored as follows in the Two orders:

We can find out the location of any element in array (NXM) by
using following formulas:

1. In case of Row Major Order:
Loc (A [i, j]) = Loc (A [1,1]) +([i-1]*M+ [j-1]) * w

where

Loc(A[[i,j]) : is the location of the element in the ith row and jth column.

Loc (A [1,1]) : is the base address or address of the first element of the
array A.

w : is the number of bytes required to store single element of the
array A.

M : is the total number of columns in the array.

•

Example: finding the location (address) of element in 2D

Suppose A 3 x 4 (N=3 and M=4) integer array A is show as below and base
address = 1000 and number of bytes=2. find the location of A [3,2]:

2. In case of Column Major Order:

Loc (A [i,j]) = Loc (A [1, 1]) + ([j-1]*N+ [i-1])*w

where

Loc(A[i,j]): is the location of the element in the ith row and jth column.

Loc (A [1,1]): is the base address or address of the first element of the array

A.

w: is the number of bytes required to store single element of the array A.

N: is the total number of rows in the array.

Example: finding the location (address) of element in 2D

Suppose A 3 x 4 (N=3 and M=4) integer array A and base address =1000 and
number of bytes=2. find the location of A [3,2]:

Note: if the value of w not determine, it suppose equal to 1.

Three Dimensional Arrays

In case three Dimensional Arrays, memory-address of the element
A[i,j,K] with dimension (NXMXR) is given by:
where:
 R : number of levels
 N: number of rows
 M: number of column

In case of Row Major Order:
Loc (A [i,j,k]) = Loc (A [1, 1, 1]) + ([k-1]*N*M+ [j-1]*N+ (i-1))*W

In case of Column Major Order:
Loc (A [i,j,k]) = Loc (A [1, 1, 1]) + ([k-1]*N*M+ [i-1]*M+ (j-1))*W

Example : Suppose A3 x 4(N=3, M=3 and R=3) integer array A and base address =1000
and number of bytes(w)=2. find the location of A [3,2,2] by using two method of
arrange matrix in memory:

Loc(A[3,2,2])= 1000+2(3*3*(2-1)+3*(3-1)+2-1)
 = 1000 + 2(9+6+1)
 = 1032

Loc(A[3,2,2])= 1000+2(3*3*(2-1)+3*(2-1)+3-1)
 = 1000 + 2(9+3+2)
 = 1028

Triangular Matrix
 A triangular matrix is a special kind of square matrix. A square matrix is called lower
triangular if all the entries above the main diagonal are zero. Similarly, a square matrix
is called upper triangular if all the entries below the main diagonal are zero.

We can find out the location of a[2,2]by using following formulas:

1. Upper triangular

In case of Row Major Order:

Loc (A [i, j]) = Base(A) + w(((i-1)*M - (i-1)*i/2) + (j-1))

In case of Column Major Order:

Loc (A[i, j]) = Base(A) + w((j-1) *j / 2 + (i-1))

2. Lower triangular

In case of Row Major Order:

Loc (A [i,j]) =Base(A) + w((i-1) * i /2 + ([j-1))

In case of Column Major Order:
Loc (A [i,j]) = Base(A) + w(((j-1) *N - (j-1)*j/2) +(i-1))

Q: How determine the number of array elements?

Ans.: To determine the number of any array elements by applying the following
equation:

where:

n is dimensions of the array

U : upper bound for dimension i

L: lower bound for dimension i

Example1: Find the number of positions required to store the array: A [5]

=5-0+1=6

Example2: Find the number of positions required to store the matrix: A [5, 6]

(5-0+1)*(6-0+1)=6*7=42

 Example3: Find the number of positions required to store the matrix:

A[2..5, 6...8]

= (5-2+1)*(8-6+1) = 4*3 =12

Arrays in Java
• In Java each row of a two-dimensional array is itself a one

dimensional array.

• Arrays of arrays in languages such as Java, Python (multidimensional lists), Visual Basic.NET, Perl,

PHP, JavaScript are implemented as Iliffe vectors and they can also be used to implement jagged

arrays.

• The Iliffe vector for a 2-dimensional array is simply a vector of pointers to vectors of data, i.e., the

Iliffe vector represents the columns of an array where each column element is a pointer to a row

vector.

• In general, an Iliffe vector for an n-dimensional array (where n ≥ 2) consists of a vector (or 1-

dimensional array) of pointers to an (n − 1)-dimensional array. They are often used to avoid the

need for expensive multiplication operations when performing address calculation on an array

element.

• While a 2D array is a 1D array of references to 1D arrays, each of these 1D arrays (rows) can have a

different length, this 2D array is called jagged arrays.

Example to initialize jagged array:

 int[][] numArr = { {1,2,3}, {4,5,6,7}, {8,9} };

In the following memory layout of a jagged array numArr.

And jagged arrays can be created with the following code:
int [][]c;
c=new int[2][];
c[0]=new int[5];
c[1]=new int[3];
Example : suppose the following declaration:
int[][]jagged = { {3,5,7,9}, {4,2}, {5,7,8,6}, {6} };

https://en.wikipedia.org/wiki/Jagged_array
https://en.wikipedia.org/wiki/Jagged_array
https://en.wikipedia.org/wiki/Jagged_array

Q: Show output of the following segment?

 int count = 0; double sum = 0;

 for (int row = 0; row <jagged.length; row++)

 if (jagged[row].length > 3){

 sum += jagged[row][3];

 count++; }

 if (count > 0)

 System.out.println((double) sum / count);

Q:How to delete and insert an element from array?

Ans.: Insertion and deletion at particular position is complex, it require shifting as in the following
examples.

Insert item to sorted array

Chapter Two

String
What is a String?

• A string is collection of characters grouped together. For example, "hello" is a

string consisting of the characters 'h', 'e', 'l', 'l', and 'o'.

• In most programming languages, strings are generally understood as a data type,

they are built in as part of the language and they take one of two basic

representations as illustrated in following figures:

1. null-terminated representation, in this, strings are represented as an array of

characters that ends with the special null terminator $.

2. pointer/length representation, in this representation a string is represented as

(a pointer to) an array of characters along with a integer that stores the length of

the string. The pointer/length representation is more efficient for some

operations. For example, in the pointer/length representation, determining the

length of the string takes constant time, since it is already stored.

What is String in java?
 In java, string is basically an object that represents sequence of char values. it is often
implemented as:
• an array of bytes that stores a sequence of elements or as a reference type , mean

string variable holds the address of the memory location where the actual body of the
string is stored.

For example:
 char[] ch={'j','a','v','a','t','p','o','i','n','t'};
 String s=new String(ch);

• Java Strings can't change the characters, but string variables can point to different

strings:
String s;
 s = "java language";
 s = "java is oop";

How to create String object?

There are two ways to create String object:

1. By string literal

2. By new keyword

 String Literal

 Java String literal is created by using double quotes. For Example:

String s="welcome";

Each time you create a string literal, the JVM checks the string constant pool
first. If the string already exists in the pool, a reference to the pooled instance
is returned. If string doesn't exist in the pool, a new string instance is created
and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//will not create new instance

•

• In the above example only one object will be created. Firstly JVM will not
find any string object with the value "Welcome" in string constant pool, so
it will create a new object. After that it will find the string with the value
"Welcome" in the pool, it will not create new object but will return the
reference to the same instance.

• Note: String objects are stored in a special memory area known as string
constant pool.

Q: Why java uses concept of string literal?

Ans.: To make Java more memory efficient (because no new objects are created if it
exists already in string constant pool).

 new keyword

Each time a new declaration a compiler would create different object in memory
Example:
 String str1 = new String("Hello");
 String str2 = new String("Hello");

In this case compiler would create two different object in memory having the
same text.

Q: What is the output of the following program?

public class StringExample{

public static void main(String args[]){

 String s1="java"; //creating string by java string literal

 char ch[]={'s','t','r','i','n','g','s'};

 String s2=new String(ch); //converting char array to string

 String s3=new String("example"); //creating java string by new keyword

 System.out.println(s1);

 System.out.println(s2);

 System.out.println(s3); }

}

Java String class methods

 The java.util.String class provides many useful methods to perform operations on
sequence of char values.

Assignment of string:

While primitive types are value types:

The memory of x and y both contain "5".

 int x = 5; int y = x;

But with reference type:

The memory of x and y both contain a pointer to the character "a"

 String x = "a";

String y = x;

No. Method Description

1 char charAt(int index) returns char value for the particular
index

2 int length() returns string length

3 String substring(int beginIndex) returns substring for given begin index

4 String substring(int beginIndex, int
endIndex)

returns substring for given begin index
and end index

5 boolean equals(Object another) checks the equality of string with
object

6 boolean isEmpty() checks if string is empty

7 String concat(String str) concatenates specified string

8 String replace(char old, char new) replaces all occurrences of specified
char value

9 String[] split(String regex) returns splitted string matching regex

10 String[] split(String regex, int limit) returns splitted string matching regex
and limit

11 String intern() returns interned string

12 int indexOf(int ch) returns specified char value index

13 int indexOf(int ch, int fromIndex) returns specified char value index
starting with given index

14 int indexOf(String substring) returns specified substring index

15 int indexOf(String substring, int
fromIndex)

returns specified substring index
starting with given index

16 String toLowerCase() returns string in lowercase.

17 String toLowerCase(Locale l) returns string in lowercase using
specified locale.

18 String toUpperCase() returns string in uppercase.

19 String toUpperCase(Locale l) returns string in uppercase using
specified locale.

20 String trim() removes beginning and ending spaces
of this string.

21 static String valueOf(int value) converts given type into string. It is
overloaded.

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

InteL
Highlight

Chapter Three

Linked lists data structure

Static and Dynamic data structures

 A static data structure is an organization of collection of data
in memory that is fixed in size. This results in the maximum size
needing to be known in advance, as memory cannot be
reallocated at a later.

Arrays are example of static data structure.

A dynamic data structures , where in with the latter the size of
the structure can dynamically grow or shrink in size as needed.

Linked lists are example of dynamic data structure.

What are different between linked lists and arrays?

What is linked list?

 A linked list is a collection of objects called nodes. Each node is linked to

its successor node in the list using a reference to the successor node.

What is linked list element?

 The linked list is sequence of nodes arranged one after another, with each

node connected to the next by a "link" (like a chain) each node contain:

1) a single element - stored object or value(We call this part Data)

2) links - reference to one or both neighboring nodes(We call this next)

Types of linked lists
• Singly Linked List : Singly linked lists contain nodes which have a data

part as well as an address part (next) which points to the next node in
sequence of nodes.

• Doubly Linked List : In a doubly linked list, each node (except he first
and last node) contains two links the first link points to the previous
node and the next link points to the next node in the sequence.

Types of linked lists

• Circular Linked List : In the circular linked list the last node of the list
contains the address of the first node.

Basic Operations
Following are the basic operations supported by an list.

1.Insert in beginning: add an element at the beginning of the list.

2.Insert in the end : add an element in the end of the list.

3.Insert after element : add an element after an item of the list.

4.Insert before element: add an element before an item of the list.

5.Delete first element: delete the element at the beginning of the list.

6.Delete last element: delete the element from the end of the list.

7.Delete and insert specific element.

8.Display forward: displaying complete list in forward manner.

9.Display backward: displaying complete list in backward manner.

Singly linked lists

To construct linked list we need define two class:
1. node class
2. singly linked list class(SLL)
class Node {
 int data;
 node next;
 node(int data) {
 this.data = data; } }
class SLL {
 node head;

 public SLL() {
 this.head = null;
}
 // methods
...
}
 }

In the following steps for create linked list with data(22, 33, 44, 55,66)

node head = new node(22);
head.next = new node(33);
head.next.next = new node(44);
head.next.next.next = new node(55);
head.next.next.next.next = new node(66);
or
 head = new node(22);
 node p= head;
 p.next = new node(33);
 p = p.next;
p.next = new node(44);
 p = p.next;
 p.next = new node(55);
 p = p.next;
 p.next = new node(66);

In the following figure shown some operation on singly linked list :

Some code segments in java to processing singly linked list

// method to print elements of singly linked list

public void printSLL() {
for (node p = head; p != null; p = p.next) {
 System.out.print(p.data + " ");
 }
}

// method for adding new node
void addLast1 (int value){
 node newNode = new node(value);
 node p = head;
 if (head == null)
 head = newNode;

 else {
 while (p.next != null)
 p = p.next;
 p.next = newNode;
 }
 }

void addLast2(int value){
 node p;
 node newNode = new node(value);
 if (head==null)
 head=newNode;
 else {
 for (p = head; p.next!= null; p=p.next)
 { }
 p.next=newNode;
}
}

// method to delete first element
public void deleteFirst() {
 head = head.next;
}
or
public void deleteFirst() {
 node curr = head;
 head = head.next;
 curr.next = null;
 curr = null;
}

//method to delete element after element in the list

public void deleteAfter(int value) {

 node p = head;

 while (p.data != value)

 p = p.next;

 node curr=p.next;

 p.next= curr.next;

}

// method to add an element after an item of the list

public void addAfter(int value, int newValue) {

 node p = head;

 while (p.data != value)

 p = p.next;

 node newNode = new node(newValue);

 newNode.next = p.next;

 p.next = newNode;

}

Doubly linked lists
In this type of linked list each node contains a pair of references. One reference points to the node that
precedes the node (prior) and the other points to the node that follows the node (next).

To construct double linked list we need define two class:

class DListNode {

 int data;

 DListNode prior, next;

 }// DListNode

class DLL {

 node head;

 public DLL() {

 this.head = null;

}

 // methods

...

}

Advantages & Disadvantages

Advantages:

• Can be traversed in either direction

• Some operations, such as deletion and inserting before a node,
become easier

Disadvantages:

• Requires more space

• List manipulations are slower (because more links must be
changed)

• Greater chance of having bugs (because more links must be
manipulated)

H.W. Write code segments in java for the following
operations:

1.Add an element at the beginning of the list.

2.Add an element in the end of the list.

3.Add an element after an item of the list.

4.Add an element before an item of the list.

5.Delete the element at the beginning of the list.

6.Delete the element from the end of the list.

Circular linked lists
 in this type of linked list:
Last node references the first node
Every node has a successor
No node in a circular linked list contains null

 Both singly linked list and doubly linked list can be made into as
circular linked list:
Singly linked list as circular, the next pointer of the last node points to the
first node.

Doubly linked list as circular, the next pointer of the last node points to
the first node and the previous pointer of the first node points to the last
node making the circular in both directions.

To construct circular linked list we need define two class:
1. node class
2. circular linked list class(CLL)

 H.W. Write code segments in java for the following operations:
• Add an element at the beginning of the list.

• Add an element in the end of the list.

• Add an element after an item of the list.

• Add an element before an item of the list.

• Delete the element at the beginning of the list.

• Delete the element from the end of the list.

 Single linked list:

public class Node {

 int data;

 Node next;

 Node(int data){

 this.data=data;

 next=null;}

 }

 public class SingleLL {

 Node head;

 SingleLL(){

 head=null;

 }

 void printList(){

 for (Node p=head; p!=null; p=p.next) {

 System.out.print(p.data+" ");

 }

 System.out.println();

 }

 void addItem(int data){

 Node p= new Node(data);

 Node c=head;

 if (head==null)

 head=p;

 else{

 for (c=head; c.next!=null; c=c.next)

 c.next=p;}

 }

void addBefore(int data, int item){

 Node p=new Node(data);

 Node cur=head;

 Node prv=head;

 if (head.data==item){

 p.next=head;

 head=p;}

 else{

 while (cur.data!=item && cur.next!=null){

 prv=cur;

 cur=cur.next; }

 if (cur.next==null)

 addItem(data);

 else{

 p.next=cur;

 prv.next=p;}

 }

 }

void addAfter(int data, int item){
 Node p=new Node(data);
 Node cur=head;
 while (cur.data!=item &&
cur.next!=null)
 cur=cur.next;
 if (cur.next==null) addItem(data);
 else {
 p.next=cur.next;
 cur.next=p;}
 }

 void deleteItem(int item){
 Node cur=head;
 Node prv=head;
 if (head.data==item)
 head=cur.next;
 else{
 while (cur.data!=item &&
cur.next!=null){
 prv=cur;
 cur=cur.next;
 }
 if (cur.next==null &&
cur.data==item) prv.next=null;
 else if (cur.next==null)
 System.out.println(item+ "
not found");
 else
 prv.next=cur.next;
 }
 }
 }

void printDLL(){
 for (DNode p=head; p!=null; p=p.next)
 System.out.print(p.data + " ");
 System.out.println();
 }

 void RprintDLL(){
 DNode p;
 for (p=head; p.next!=null; p=p.next){}
 for (; p!=null; p=p.prev)
 System.out.print(p.data + " ");
 System.out.println();
 }

 void addItem(int data){
 DNode p = new DNode(data);
 DNode c;
 if (head==null)
 head=p;
 else{
 for (c=head; c.next!=null; c=c.next){}
 c.next=p;
 p.prev=c;}
 }

Double linked list

public class DNode {

 int data;

 DNode next, prev;

 DNode(int data){

 this.data=data;

 next = null;

 prev = null; }

 }

public class DoubleLL {

 DNode head=null;

 DoubleLL(){

 head=null;

 }

 void addAfter(int data, int item){

 DNode p= new DNode(data);

 DNode c=head;

 while (c.data!=item && c.next!=null)

 c=c.next;

 if (c.next==null && c.data!=item)

 System.out.println(item + " not
found");

 else if (c.next==null)

 addItem(data);

 else{

 p.next=c.next;

 c.next.prev=p;

 c.next=p;

 p.prev=c;}

 }

void addBefore(int data, int item){
 DNode p=new DNode(data);
 DNode c=head;
 if (head.data==item){
 p.next=head;
 head.prev=p;
 head=p;}
 else {
 while (c.data!=item &&
c.next!=null)
 c=c.next;
 if (c.data!=item && c.next==null)
 System.out.println(item + " not
found");

 else{
 p.next=c;
 DNode q=c.prev;
 q.next=p;
 p.prev=q;
 c.prev=p;}
 }
 }

void deleteItem(int item){

 DNode p=head;

 if (head.data==item){

 head.next.prev=null;

 head=head.next;

 }

 else {

 while (p.data!=item && p.next!=null)

 p=p.next;

 if (p.data!=item && p.next==null)

 System.out.println(item + " not
found");

 else if (p.data==item && p.next==null){

 DNode q=p.prev;

 q.next=null;}

 else {

 DNode q=p.prev;

 q.next=p.next;

 p.next.prev=q;

 }

 }

 circular linked list

public class CirclLL {

 Node head;

 CirclLL(){

 head=null; }

 void printList(){

 Node p;

 for (p=head; p.next!=head; p=p.next) {

 System.out.print(p.data+" ");

 }

 System.out.println(p.data+"\n");}

 void addItem(int data){

 Node p= new Node(data);

 Node c=head;

 if (head==null){

 head=p;

 p.next=head;}

 else{

 for (c=head; c.next!=head; c=c.next){}

 c.next=p;

 p.next=head;} }

void addBefore(int data, int item){

 Node p=new Node(data);

 Node cur=head;

 Node prv=head;

 if (head.data==item){

 for (cur=head; cur.next!=head;

 cur=cur.next) {}

 p.next=head;

 head=p;

 cur.next=head;}

 else{

 while (cur.data!=item && cur.next!=head){

 prv=cur;

 cur=cur.next; }

 if (cur.next==head && cur.data==item){

 p.next=cur;

 prv.next=p;}

 else if (cur.next==head)

 addItem(data);

 else{

 p.next=cur;

 prv.next=p;}

 }

 }

void addAfter(int data, int item){

 Node p=new Node(data);

 Node cur=head;

 while (cur.data!=item && cur.next!=null)

 cur=cur.next;

 if (cur.next==head) addItem(data);

 else {

 p.next=cur.next;

 cur.next=p;} }

 void deleteItem(int item){

 Node cur=head;

 Node prv=head;

 if (head.data==item){

 for (cur=head; cur.next!=head; cur=cur.next) {

 head=head.next;

 cur.next=head;}

 else{

 while (cur.data!=item && cur.next!=head){

 prv=cur;

 cur=cur.next; }

 if (cur.next==head && cur.data==item)

 prv.next=head;

 else if (cur.next==head)

 System.out.println(item+ " not found");

 else

 prv.next=cur.next; } } }

Chapter Four

Stacks

What is the Stack?

• Stack is a dynamic linear data structure.

• Data in a stack are added and removed from only one end of
the list.

• We define a stack as a list of homogeneous items that are
accessible only from the end of the list, which is called the top
of the stack.

• Elements are always removed from the top, and inserted on
the top also.

• A stack is known as a Last-in, First-out (LIFO) data structure

Basic Features of Stack

1. Stack is an ordered list of similar data type.

2. Stack is a LIFO structure. (Last in First out).

3. There are two operation : push function is used to insert new
elements into the Stack and pop is used to delete an element
from the stack. Both insertion and deletion are allowed at only
one end of stack called Top.

4. Stack is said to be in Overflow state when it is completely full
and is said to be in Underflow state if it is completely empty.

Storage Structure

Storage structure depends on the implementation of
stack , array or linked list structure.

Implementation of Stack

Stack can be easily implemented using an Array or a
Linked List. Arrays are quick, but are limited in size and
Linked List requires overhead to allocate, link but is not
limited in size.

Implementation of stack using Array

The following figure shows implementation for stack using array:

In the following stack class:
class stack{
 int top;
 int listArray[]=new int[10]; //Maximum size of Stack
 stack() {
 top = -1;}

 void push(int x){

 if (top >= 10)
 System.out.println("Stack Overflow");

 else{
 top++;
 listArray[top] = x;
 System.out.println("Element Inserted");}
 }

 int pop(){
 if (top < 0) {
 System.out.println("Stack Underflow");
 return 0; }
 else {
 int d = listArray[top];
 top--;
 return d; }
 }
 }

Stack implementation using a linked list

The following figure shows implementation for stack using linked
list:

In the following stack class:

class StackLinkedList {

 node top = null;

 void push(int data) {
 node p = new node(data);
 if (top == null)
 top = p;
 else{
 p.next = top;
 top = p; }
 }

node pop() {
 if (top == null){
 System.out.println(" Stack
is Empty.... ");
 return top;}
 else{
 node p = top;
 top = top.next;
 return p;}
 }

void peek(){
 if (top == null)
 System.out.println("The
Stack is Empty....");
 else
 System.out.println
(top.data);}

 void clear() {
 if (top == null)
System.out.println("The Stack is
Empty....");
 else top = null; }

void displayStack() { Example:

 node current = top;

 while (current != null) {

 System.out.print(current.data);

 System.out.print(" ");

 current = current.next; }

 }

 }

Applications of Stack

1. Reverse a word: You push a given word to stack - letter by letter - and then pop
letters from the stack.
2. Expression Conversion and evaluating expressions.
3. Call subprogram and recursion processing

Converting and Evaluating Expressions
 Arithmetical operations like addition, subtraction, multiplication, and division are
called binary operations because they each combine two operands:

Operand operator operand
 There are three type for operator notations : Infix, prefix and postfix(also called
reverse Polish notation, or RPN) . for example consider the simple binary operation a
+ b Equivalent prefix and postfix forms are shown bellow:.

Prefix: + a b operator first
Postfix: a b + operator last

Notes:

1. Postfix expressions are easier to process by machine than are
infix expressions. and it used in stack to evaluate the
expressions.

2. Each operator has precedence as shown in the following
table.

Operator Precedence

()
Exponentiation ^

Highest

Lowest Multiplication (*) & Division (/)

Addition (+) & Subtraction (−)

Convert Infix to Postfix Algorithm (in case expression NOT contain
parentheses)

Step 1: For each term in expression

Step 2: If term is an operator

Compare it with the operator on the top, if have the same or higher
precedence , Pop it, otherwise Push this operator into stack

 Else Copy operand to output

 end if

Step 3: Pop remaining operators and copy to output

Example 1: By using stack data structure convert Infix expression a + b / c to Postfix
expression

Expression Stack Operator
Output

(RPN)
Action

a+b/c Empty -

+b/c Empty a

b/c + a Push +

/c + ab

C +/ ab Push /

Empty +/ abc

Empty + abc/ Pop /

Empty Empty abc/+ Pop +

Example 2: : By using stack data structure convert Infix expression a + b + c + d

to Postfix expression.

Expression
Stack

Operator

Output

(RPN)
Action

a+b+c+d Empty -

+b+c+d Empty a

b+c+d + a Push +

+c+d + ab

+c+d Empty ab+ Pop +

c+d + ab+

+d + ab+c

+d Empty ab+c+ Pop +

d + ab+c+

Empty + ab+c+d

Empty Empty ab+c+d+ Pop +

Exercises: Convert these infix expressions to postfix
expressions:

1. a + b * c* d+ e

2. a * b + c * d* e* f

3. a / b / c + d * e * f

4. a+b*c^d/e-f*g

5. a-b+c*d/e

Algorithm to Convert an infix expression to postfix notation(in
case expression contain parentheses)

 Suppose Q is an arithmetic expression(contain parentheses) in infix notation. We will
create an equivalent postfix expression P by adding items to on the right of P.

 Start with an empty stack. We scan Q from left to right.

 While (we have not reached the end of Q)

 If (an operand is found)

 Add it to P

 end if

 If (a left parenthesis is found)

 Push it onto the stack

 end if

 If (a right parenthesis is found)

 While (the stack is not empty AND the top item is not a left

 parenthesis)

 Pop the stack and add the popped value to P

 end while

 Pop the left parenthesis from the stack and discard it

 End-If

 If (an operator is found)

 If (the stack is empty or if the top element is a left parenthesis)

 Push the operator onto the stack

 Else

 While (the stack is not empty AND the top of the stack

 is not a left parenthesis AND precedence of the

 operator <= precedence of the top of the stack)

 Pop the stack and add the top value to P

 End-While

 Push the latest operator onto the stack

 End-If

 End-If

End-While

 While (the stack is not empty)

 Pop the stack and add the popped value to P

 End-While

Note : At the end, if there is still a left parenthesis at the top of the stack, or if
we find a right parenthesis when the stack is empty, then Q contained
unbalanced parentheses and is in error.

Example 3 : Convert the infix expressions to postfix:(2+3)*4

Expression Stack Operator
Output

(RPN)
Action

(2+3)*4 Empty -

2+3)*4 (- Push (

+3)*4 (2

3)*4 (+ 2 Push +

)*4 (+ 2 3

*4 (2 3 + Pop +

*4 Empty 2 3 + Pop (

4 * 2 3 +

Empty * 2 3 + 4

Empty Empty 2 3 + 4 * Pop *

Example 4 : Convert the infix expressions to postfix:2+(3*4)

 Expression
Stack

Operator

Output

(RPN)
Action

2+(3*4) Empty -

+(3*4) Empty 2

(3*4) + 2 Push +

3*4) +(2 Push(

*4) +(2 3

 4) +(* 2 3 Push*

) +(* 2 3 4

Empty +(* 2 3 4 * Pop *

Empty +(2 3 4 * Pop (

Empty Empty 2 3 4 * + Pop +

Example 5: Convert the infix expressions to postfix:(3*2+4)^2

Expression
Stack

Operator

Output

(RPN)
Action

(3*2+4)^2 Empty -

3*2+4)^2 (- Push(

*2+4)^2 (3

2+4)^2 (3 Push *

+4)^2 (* 3 2

+4)^2 (3 2* Pop *

 4)^2 (+ 3 2 * Push +

)^2 (+ 3 2 *4

^2 (3 2* 4 + Pop +

^2 Empty 3 2 *4 + Pop (

2 ^ 3 2 *4 + Push ^

Empty ^ 3 2 *4+ 2

Empty Empty 3 2 *4 + 2 ^ Pop ^

Algorithm to Evaluate a postfix expression

Suppose P is an arithmetic expression (contain parentheses)in postfix
notation. We will evaluate it using a stack to hold the operands.

 Start with an empty stack. We scan P from left to right.

 While (we have not reached the end of P)

 If an operand is found

 push it onto the stack

 End-If

 If an operator is found

 Pop the stack and call the value A

 Pop the stack and call the value B

 Evaluate B op A using the operator just found.

 Push the resulting value onto the stack

 End-If

 End-While

 Pop the stack (this is the final value)

Notes:

At the end, there should be only one element left on the stack.

This assumes the postfix expression is valid.

Example 6 : consider the postfix expression : 3 5 1 - *

Example 7 : consider the postfix expression : 5 4 + 3 / 1 6*+

Expression Execute stack Action

5 4 + 3 / 1 6* + Empty

4 + 3 / 1 6* + 5 Push 5

 + 3 / 1 6* + 5 4 Push 4

 3 / 1 6* + 9 Pop 5 and 4,Execute 5+4=9 , Push 9

 1 6* + 9 3 Pop 9 and 3,Execute 9/3= 3 , Push 3

 1 6* + 3 Pop 6 and 1, Execute 6/1 = 6, Push 6

 6* + 3 1

 * + 3 1 6 Pop 1 and 6, Execute 6*1 = 6, Push 6

 + 3 6 Pop 3 and 6, Execute 3+6 = 9, Push9

Empty 9

Empty Empty Pop the result 9

Example8 : Evaluate the postfix expression : 3 2 *4 + 2 ^

Expression Execute stack Action

3 2 *4 + 2 ^ Empty

 2 *4 + 2 ^ 3 Push 3

 *4 + 2 ^ 3 2 Push 2

4 + 2 ^ 6 Pop 3 and 2, Exeute2 *3=6, Push 6

 + 2 ^ 6 4 Push 4

 2 ^ 10 Pop 6 and 4, Execute 6+4=10, Push 10

 2 ^ 10 2 Push 2

 ^ 100 Pop 10 and 2, Exeute10^2=100, Push 100

Empty Empty Pop the result 100

Example9 : Evaluate the postfix expression : 2 3 4 * + 2 ^

Expression Execute stack Action

2 3 4 * + 2 ^ Empty

 3 4 * + 2 ^ 2 Push 2

 4 * + 2 ^ 2 3 Push 3

 * + 2 ^ 2 3 4 Push 4

 + 2 ^ 2 Pop 3 and 4,Execute 3*4= 12,Push 12

 + 2 ^ 2 12

 2 ^ 14 Pop 2 and 12, Execute 2+12=14, Push 14

 ^ 14 2 Push 2

 Empty 196 Pop 14 and 2, Execute 14^2 = 196, Push196

Empty Empty Pop the result 196

Exercises: Convert the following infix expressions to postfix then evaluates
these postfix expressions, giving the stack contents after each step:

1. a/b+c/d
2. (a + b) * (c + d)
3. ((a + b) * c) - d
4. (80 – 30) * (40 + 50 / 10)
5. (a + b) – (c / (d + e))
6. a / ((b / c) * (d – e))
7. (a / (b / c)) * (d – e)
8. a * b + c) / d – e)
9. (a – b) / (c * (d + e))
10. a / (b + (c * (d – e)))
11. (((2 * 5) - (1 * 2)) / (11 - 9))
12. (2 * 5 - 1 * 2) / (11 - 9)
13. A + B * C / D - E
14. A + B * (C - D)) / E

