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1. Linear Search Algorithm 

The Linear Search Algorithm is a simple searching algorithm that checks each 
element in a list or array sequentially until the desired element is found or the 
entire list has been searched. It's often called a sequential search because it 
processes the elements one by one in order. 

How Linear Search Works: 

1. Start at the beginning of the list. 

2. Compare the target value (the element you're searching for) with the 
current element in the list. 

3. If the target matches the current element, return the index or position of 
that element. 

4. If the target doesn't match, move to the next element and repeat the 
process. 

5. Continue this until the target is found or you've checked all elements. 

6. If the element is not found after checking the whole list, return an 
indication that the element is not present (like -1). 

Pseudocode: 

function linearSearch(array, target): 

    for index from 0 to length of array - 1: 

        if array[index] == target: 

            return index 

    return -1  # Target not found 

Time Complexity: 

• Worst-case time complexity: O(n), where n is the number of elements in 
the list. In the worst case, you would need to check every single element. 
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• Best-case time complexity: O(1), if the target element is found at the first 
position. 

 

Example: 

We have a list: [5, 3, 8, 4, 6], and we want to search for 8. 

1. Compare 5 with 8 → no match. 

2. Compare 3 with 8 → no match. 

3. Compare 8 with 8 → match found at index 2. 

So, the result would be 2, since 8 is found at the third position (index 2 in 0-based 
indexing). 

When to use Linear Search: 

• When the list is unsorted or if the size of the list is small. 

• It's easy to implement and doesn't require additional space (it’s done in-
place). 
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2. Binary Search Algorithm 

The Binary Search Algorithm is a more efficient search algorithm than linear 
search, but it only works on sorted arrays or lists. It repeatedly divides the search 
interval in half, checking whether the target value is in the left or right half of the 
current interval. This reduces the number of elements to check at each step. 

How Binary Search Works: 

1. Start with two pointers: low (initially set to the first index) and high (initially 
set to the last index). 

2. Find the middle index: mid = (low + high) // 2. 

3. Compare the element at mid with the target:  

o If the element at mid is equal to the target, the search is successful, 
and you return the index mid. 

o If the element at mid is less than the target, the target must be in the 
right half of the list, so you update low = mid + 1. 

o If the element at mid is greater than the target, the target must be in 
the left half of the list, so you update high = mid - 1. 

4. Repeat steps 2 and 3 until you either find the target or the search interval 
becomes invalid (i.e., low > high), indicating that the target is not in the list. 

Pseudocode: 

function binarySearch(array, target): 

    low = 0 

    high = length of array - 1 

     

    while low <= high: 

        mid = (low + high) // 2 
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        if array[mid] == target: 

            return mid  # Found the target, return index 

        elif array[mid] < target: 

            low = mid + 1  # Target is in the right half 

        else: 

            high = mid - 1  # Target is in the left half 

             

    return -1  # Target not found 

Time Complexity: 

• Worst-case time complexity: O(log n), where n is the number of elements 
in the list. Each time, the size of the list is halved. 

• Best-case time complexity: O(1), if the target is found at the middle in the 
first comparison. 
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Searching for key=4 

Example: 

Let's say we have a sorted list: [2, 4, 6, 8, 10, 12, 14, 16, 18], and we want to 
search for 10. 

1. Initial low = 0, high = 8 (length of the list is 9, so index goes from 0 to 8).  

o Middle index: mid = (0 + 8) // 2 = 4. 

o Element at index 4 is 10, which is the target. 

So, the result is that the target 10 is found at index 4. 
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# Example usage 

arr = [2, 4, 6, 8, 10, 12, 14, 16, 18] 

target = 10 

index = binary_search(arr, target) 

 

if index != -1: 

    print(f"Element {target} found at index {index}") 

else: 

    print(f"Element {target} not found in the list") 

Output: 

Element 10 found at index 4 

When to use Binary Search: 

• Use binary search when your data is sorted. 

• It's much faster than linear search for large datasets because it drastically 
reduces the number of comparisons needed. 
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1. Bubble Sort 

Bubble Sort is one of the simplest sorting algorithms. It works by repeatedly 
stepping through the list to be sorted, comparing adjacent elements, and swapping 
them if they are in the wrong order. This process is repeated until the list is sorted. 
The name "bubble sort" comes from the way larger elements "bubble" to the top 
of the list with each pass through the array. 

How Bubble Sort Works: 

1. Start from the first element of the list. 

2. Compare the current element with the next element.  

o If the current element is greater than the next element, swap them. 

o If the current element is smaller or equal, no action is taken. 

3. Move to the next pair of adjacent elements and repeat the comparison and 
swap if necessary. 

4. Repeat the process for each element in the list. After each pass, the largest 
unsorted element will have "bubbled" up to its correct position. 

5. Stop when no swaps are needed during a full pass through the list, 
indicating that the list is fully sorted. 

Pseudocode: 

function bubbleSort(arr): 

    n = length of arr 

    for i = 0 to n-1: 

        # Flag to optimize the process (to stop early if no swaps) 

        swapped = false 

        for j = 0 to n-i-2: 

            if arr[j] > arr[j+1]: 



Data Structures and Algorithms II 
Second Stage 

Shatt Al-Arab University 
College of Science 

Computer Science Department 
 
 

Mustafa H. Hashim 

                swap arr[j] and arr[j+1] 

                swapped = true 

        if not swapped: 

            break  # No swaps, so the array is already sorted 

Time Complexity: 

• Worst-case time complexity: O(n²), where n is the number of elements in 
the list. In the worst case, you might need to make n-1 passes, and for each 
pass, you make n-i-1 comparisons. 

• Best-case time complexity: O(n), if the list is already sorted (optimization 
with the swapped flag). 
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Example: 

Let’s say we have the following list of integers that we want to sort: [5, 2, 9, 1, 5, 
6]. 

Pass 1: 

• Compare 5 and 2: Swap → [2, 5, 9, 1, 5, 6] 

• Compare 5 and 9: No swap. 

• Compare 9 and 1: Swap → [2, 5, 1, 9, 5, 6] 

• Compare 9 and 5: Swap → [2, 5, 1, 5, 9, 6] 

• Compare 9 and 6: Swap → [2, 5, 1, 5, 6, 9] 

After the first pass, 9 is correctly placed at the end of the list. 

Pass 2: 

• Compare 2 and 5: No swap. 

• Compare 5 and 1: Swap → [2, 1, 5, 5, 6, 9] 

• Compare 5 and 5: No swap. 

• Compare 5 and 6: No swap. 

After the second pass, 6 is correctly placed. 

Pass 3: 

• Compare 2 and 1: Swap → [1, 2, 5, 5, 6, 9] 

• Compare 2 and 5: No swap. 

• Compare 5 and 5: No swap. 

After the third pass, no more swaps are needed, so the list is sorted. 
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# Example usage 

arr = [5, 2, 9, 1, 5, 6] 

bubble_sort(arr) 

print("Sorted array:", arr) 

Output: 

Sorted array: [1, 2, 5, 5, 6, 9] 

When to Use Bubble Sort: 

• Educational purposes: It’s simple to understand and explain, but not 
efficient for large datasets. 

• Small datasets: It can be practical for small lists or arrays, but for larger 
datasets, other algorithms like Merge Sort, Quick Sort, or even Insertion 
Sort are typically preferred due to their better time complexities. 

2. Quick Sort Algorithm 

Quick Sort is a highly efficient divide and conquer sorting algorithm that works by 
selecting a "pivot" element from the array and partitioning the other elements 
into two sub-arrays—those less than the pivot and those greater than the pivot. 
The sub-arrays are then sorted recursively. 

How Quick Sort Works: 

1. Choose a pivot element from the array. The pivot can be selected in various 
ways, such as choosing the first element, the last element, the middle 
element, or a random element. (Different strategies can affect performance, 
but the basic idea remains the same.) 

2. Partitioning:  

o Rearrange the elements in the array so that all elements smaller than 
the pivot come before it, and all elements larger than the pivot come 
after it. This step places the pivot in its correct sorted position. 
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3. Recursively apply the above steps to the sub-arrays (those to the left and 
right of the pivot). 

4. Base case: The recursion terminates when the sub-array has only one 
element or is empty, meaning the array is sorted. 

Pseudocode: 

function quickSort(arr): 

    if length of arr <= 1: 

        return arr 

     

    pivot = arr[0]  # Or choose a random pivot or the last element 

    left = [] 

    right = [] 

     

    for each element in arr[1:]: 

        if element < pivot: 

            append element to left 

        else: 

            append element to right 

     

    return quickSort(left) + [pivot] + quickSort(right) 

Time Complexity: 

• Best-case time complexity: O(n log n), which happens when the pivot 
divides the array roughly in half each time. 
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• Worst-case time complexity: O(n²), which occurs when the pivot is always 
the smallest or largest element (e.g., when the array is already sorted or 
nearly sorted). 

• Average-case time complexity: O(n log n), which is the expected 
performance for most inputs. 

Example: 

Let’s say we have the following list: [8, 2, 7, 1, 5, 3] and we want to sort it using 
quick sort. 

Step 1: Choose a pivot (e.g., the first element: 8). 

• Left sub-array: [2, 7, 1, 5, 3] (all elements less than 8) 

• Right sub-array: [] (no elements greater than 8) 

• The pivot 8 is now in its correct position. 

Step 2: Apply quick sort on the left sub-array [2, 7, 1, 5, 3]. 

1. Choose pivot: 2. 

o Left sub-array: [1] 

o Right sub-array: [7, 5, 3] 

o The pivot 2 is now in its correct position. 

2. Apply quick sort on [1] and [7, 5, 3]. 

o For [1], no further sorting is needed. 

o For [7, 5, 3], choose a pivot (7): 

▪ Left sub-array: [5, 3] 

▪ Right sub-array: [] 

▪ The pivot 7 is now in its correct position. 

o Apply quick sort on [5, 3]: 
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▪ Choose a pivot (5):  

▪ Left sub-array: [3] 

▪ Right sub-array: [] 

▪ The pivot 5 is now in its correct position. 

o Now all elements are sorted. 

Step 3: Combine all sorted sub-arrays: 

Final sorted array: [1, 2, 3, 5, 7, 8] 
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When to Use Quick Sort: 

• Fast on average: Quick Sort is generally one of the fastest sorting algorithms 
for large datasets due to its average-case time complexity of O(n log n). 

• Efficient in-place: It doesn’t require extra memory for sorting, as it sorts the 
array in place (except for recursion stack space). 

• Best for random or unsorted data: It's great for general-purpose sorting but 
can perform poorly if the data is already sorted or nearly sorted unless you 
optimize the pivot selection strategy. 

3. Merge Sort Algorithm 

Merge Sort is a highly efficient, divide and conquer sorting algorithm. It works by 
dividing the input array into two halves, recursively sorting each half, and then 
merging the two sorted halves back together. 

How Merge Sort Works: 

1. Divide the array into two halves.  

o This is done recursively, splitting the array until each sub-array has 
only one element (a single-element array is trivially sorted). 

2. Conquer by recursively sorting the two halves. 

3. Combine (Merge) the two sorted halves into a single sorted array. This is 
done by comparing elements of the two halves one by one and putting 
them in the correct order. 

Merge Sort Algorithm: 

1. Base case: If the array has only one element or is empty, it's already sorted. 

2. Recursive case:  

o Split the array into two halves. 

o Recursively sort each half. 
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o Merge the two sorted halves into a single sorted array. 

Pseudocode: 

function mergeSort(arr): 

    if length of arr <= 1: 

        return arr 

     

    mid = length of arr // 2 

    left = mergeSort(arr[:mid])  # Recursively sort the left half 

    right = mergeSort(arr[mid:])  # Recursively sort the right half 

     

    return merge(left, right)  # Merge the sorted halves 

 

function merge(left, right): 

    result = [] 

    i, j = 0, 0 

     

    while i < length of left and j < length of right: 

        if left[i] < right[j]: 

            append left[i] to result 

            i += 1 

        else: 

            append right[j] to result 

            j += 1 
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    # If there are remaining elements in left or right 

    result += left[i:] 

    result += right[j:] 

     

    return result 

Time Complexity: 

• Worst-case time complexity: O(n log n), where n is the number of elements 
in the array. This is because the array is divided into two halves at each level 
(log n divisions), and merging takes linear time (O(n)). 

• Best-case time complexity: O(n log n), because merge sort always divides 
the array in half and then merges the sorted halves, regardless of the initial 
order of elements. 

• Space complexity: O(n), because merge sort requires additional space for 
the merged arrays. 

Example: 

Let’s walk through the process of sorting the array [38, 27, 43, 3, 9, 82, 10] using 
merge sort. 

1. Initial array: [38, 27, 43, 3, 9, 82, 10] 

o Split into two halves: [38, 27, 43] and [3, 9, 82, 10]. 

2. Sort the left half ([38, 27, 43]): 

o Split into two halves: [38] and [27, 43]. 

o [38] is already sorted. 

o Sort [27, 43]: split into [27] and [43], both are sorted. 

o Merge [27] and [43] → [27, 43]. 
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o Merge [38] and [27, 43] → [27, 38, 43]. 

3. Sort the right half ([3, 9, 82, 10]): 

o Split into two halves: [3, 9] and [82, 10]. 

o Sort [3, 9]: merge them → [3, 9]. 

o Sort [82, 10]: merge them → [10, 82]. 

o Merge [3, 9] and [10, 82] → [3, 9, 10, 82]. 

4. Merge the two sorted halves: [27, 38, 43] and [3, 9, 10, 82]. 

o Compare and merge: [3, 9, 10, 27, 38, 43, 82]. 

The sorted array is: [3, 9, 10, 27, 38, 43, 82]. 
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When to Use Merge Sort: 

• Large datasets: Merge Sort is efficient for large datasets because of its O(n 
log n) time complexity. 

• Stable sort: Merge Sort is a stable sort, meaning that it preserves the 
relative order of equal elements (which may be important in certain 
applications). 

• External sorting: Merge Sort is commonly used for sorting large files that 
cannot fit into memory (external sorting), as it can be efficiently 
implemented with disk-based storage. 

Advantages: 

• Guaranteed O(n log n) time complexity in all cases (unlike Quick Sort, which 
can degrade to O(n²) in the worst case). 

• Stable sorting: This can be important when sorting objects with multiple 
fields. 

• Suitable for linked lists: Merge Sort works very well with linked lists as 
there’s no need for random access to elements. 

Disadvantages: 

• Space complexity: Merge Sort requires O(n) additional space for the 
merged arrays, which may not be suitable for memory-limited 
environments. 

Here’s a comparison between Bubble Sort, Quick Sort, and Merge Sort based on 
various factors such as time complexity, space complexity, ease of 
implementation, and use cases. 
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1. Time Complexity: 

Algorithm Best-case Average-case Worst-case 

Bubble Sort O(n) O(n²) O(n²) 

Quick Sort O(n log n) O(n log n) O(n²) 

Merge Sort O(n log n) O(n log n) O(n log n) 

 

• Bubble Sort: The best case occurs when the list is already sorted (O(n)), but 
in general, it’s inefficient for larger datasets with a worst-case and average 
time complexity of O(n²). 

• Quick Sort: The best and average cases occur when the pivot divides the 
array into nearly equal halves, leading to O(n log n) time complexity. 
However, if the pivot is poorly chosen (e.g., always the smallest or largest 
element), the worst-case complexity becomes O(n²). 

• Merge Sort: Always has O(n log n) time complexity, both in the best, 
average, and worst cases. It’s highly predictable. 

2. Space Complexity: 

Algorithm Space Complexity 

Bubble Sort O(1) (in-place) 

Quick Sort O(log n) (in-place with recursion stack) 

Merge Sort O(n) (extra space for the merged arrays) 

 

• Bubble Sort: Operates in-place, meaning it doesn’t require additional 
memory apart from the input array, so it has O(1) space complexity. 
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• Quick Sort: Works in-place as well, with only recursion consuming 
additional space, so its space complexity is O(log n) due to the recursion 
stack. 

• Merge Sort: Requires O(n) extra space because it creates temporary sub-
arrays during the merging process. 

3. Stability: 

Algorithm Stable 

Bubble Sort Yes 

Quick Sort No (in general, though it can be made stable) 

Merge Sort Yes 

 

• Bubble Sort: It’s stable, meaning that equal elements retain their relative 
order after sorting. 

• Quick Sort: Typically unstable because it can reorder equal elements. 

• Merge Sort: Stable, ensuring that equal elements retain their relative order. 

4. Ease of Implementation: 

Algorithm Ease of Implementation 

Bubble Sort Very easy (simple to understand and implement) 

Quick Sort Moderate (requires understanding of partitioning and recursion) 

Merge Sort Moderate (requires extra space for merging and recursion) 

 

• Bubble Sort: Easiest to implement because it is conceptually simple (just 
swap adjacent elements if they're in the wrong order). 
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• Quick Sort: Moderately easy but requires handling recursion and 
partitioning logic, which can be tricky for beginners. 

• Merge Sort: Moderate to implement due to the need for recursion and 
extra space for merging, but it’s straightforward once you understand the 
divide and conquer approach. 

 

5. Performance on Large Datasets: 

Algorithm Performance on Large Datasets 

Bubble Sort Poor (O(n²)) 

Quick Sort Excellent (O(n log n) average) 

Merge Sort Good (O(n log n)) 

 

• Bubble Sort: Performs poorly on large datasets due to its O(n²) time 
complexity. 

• Quick Sort: Performs exceptionally well on large datasets in practice 
because its average time complexity is O(n log n). Its worst case (O(n²)) can 
be avoided with good pivot selection. 

• Merge Sort: Has good performance on large datasets with O(n log n) time 
complexity, but it requires additional memory for merging. 
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6. Use Cases: 

Algorithm Best Use Case 

Bubble 
Sort 

Small datasets or educational purposes (not suitable for large 
datasets) 

Quick Sort Large, unsorted datasets where average performance is critical; in-
place sorting 

Merge Sort Large datasets where stable sorting is needed; external sorting for 
large files 

 

• Bubble Sort: Best for small arrays or as an introductory sorting algorithm for 
learning purposes. It is not recommended for large datasets. 

• Quick Sort: A great choice for general-purpose sorting, especially for large 
datasets where average-case performance matters. However, it should be 
avoided on nearly sorted data unless optimized with a good pivot strategy. 

• Merge Sort: Excellent for sorting large datasets, particularly when a stable 
sort is required. It's also the go-to choice when external sorting (sorting 
very large files) is needed because it can be implemented with a file-based 
approach. 
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7. Summary Table: 

Feature Bubble Sort Quick Sort Merge Sort 

Time Complexity O(n²) O(n log n) 
(avg), O(n²) 
(worst) 

O(n log n) 

Space Complexity O(1) O(log n) O(n) 

Stability Stable Unstable Stable 

Ease of 
Implementation 

Easy Moderate Moderate 

Performance on 
Large Datasets 

Poor (O(n²)) Excellent (O(n 
log n) avg) 

Good (O(n log n)) 

Best Use Case Small datasets, 
educational 

Large unsorted 
datasets 

Large datasets, stable 
sort needed, external 
sorting 

Conclusion: 

• Bubble Sort is simple but inefficient for larger datasets. 

• Quick Sort is generally the fastest for average cases, making it a good choice 
for large datasets, but it can be inefficient in the worst case if the pivot 
selection is poor. 

• Merge Sort guarantees O(n log n) performance and is stable, but it requires 
extra memory and might not be as fast in practice as Quick Sort for certain 
data types. 

Each of these sorting algorithms has its strengths and weaknesses, and the choice 
of algorithm depends on the specific requirements of your application. If you’re 
working with a large, unsorted dataset, Quick Sort or Merge Sort is often a better 
choice than Bubble Sort. 



 

Non-linear Data Structure (Abstract Data 
Structure-ADT):  
      Data structures where data elements are not arranged sequentially or linearly are called 
non-linear data structures. In a non-linear data structure, single level is not involved. Therefore, 
we can’t traverse all the elements in single run only.  Whereas in non-linear data structure, 
multiple levels are involved, then, we can traverse all the elements.  
Examples of none-linear data structure are trees and graphs. 
 
ADTs are entities that are 
definitions of data and 
operation but not have 
implements details. 

 
 
    
 

Tree Data Structure 
A tree (upside down) is a nonlinear 
hierarchical data structure that consists of 
nodes connected by edges with parent-child 
relationship.  
 

 Each node (except the top node) has a 
parent and zero or more children 
nodes. 

 Each node has data in any type as char, 
number, and string. 

 First node that starts with the tree   
called root.  

 

Lecture #03



 
Tree Terminologies 

Node is an entity that contains a value and pointers 
to its child nodes. 
 
Leaf node (also called as external nodes ) is  the 
node which does not have a child. 
 
Non-leaf (also called as internal node) is a node 
with at least one child. 
[The root node is also said to be Internal Node] 
 
Edge is the link between any two nodes. 
 
Root is the topmost node of a tree (without any 
parent). 
 

 

Sibling Nodes:  nodes that have the same parent. 
 
Ancestor node (N):  any predecessor node on a 
path from node N to root. [The root node doesn't 
have any ancestors. [2,1  are ancestor of 5] 
 
Descendant node (N): any successor node on a 
path from  node N to leaf [6, 7, 8 are descendant of 
5] 
 

Child node: If the node is a descendant of any 
node, then the node is known as a child node. 

Parent: If the node contains any sub-node, 
then that node is said to be the parent of that 
sub-node. [5 is parent of 6,7,8] 

Subtree : tree consisting of a node and its 
descendants 
 
Path: the sequence of nodes from one node 
(source node) to another node(destination node). 

 

 



 

Height of a Node N: is the longest path from node N to leaf. 
[Height of leaf node = 0] 
 
Depth of a Node N: is the number of edges from the root to 
the node N. In other words: it is the number of nodes it passes 
from root through down to node N. [depth of root node = 0] 
 
Height of a Tree: is height of the root node. 
 
Depth of a Tree: the total number of edges from root 
node to a leaf node in the longest path.[ maximum depth of 
any node] 
 
Degree of a Node N: number of children of that node. 
[degree of leaf =0] 
 
Degree of a Tree: maximum degree among of nodes. 
 

 

 

Level 
the root node is said to be at Level 0 and 
the children of root node are at Level 1 and 
the children of the nodes which are at Level 
1 will be at Level 2 and so on...  
Depth of each node in any level equal to that 
level number. 

 

 

 

 

 

 

 
 



Question: Consider the trees below.  
1. Which node is the root?  
2. What are the internal nodes?  
3. How many descendants does node (?) have?  
4. What is the depth of node (?)?  
5. What are the internal nodes?  
6. How many descendants does node (?) have?  
7. How many ancestors does node (?) have?  
8. What is the depth of node (?)?  
9. What are the siblings of node (?)?  
10. Which nodes are in the subtree rooted at node (?)? 
11. What is the height of the tree? 

 

 

 

 
 

 

 

 

 



 
A Linked Structure for Tree 
     The tree data structure can be created by creating the nodes dynamically with linked list. 
 A tree node is represented by an object storing 

◾ Element 
◾ A parent node 
◾ A sequence of children nodes 

 

 
 

Binary Tree  
     Binary tree is a tree data structure in which each parent node can have at most two 
children. [Children ordered pair (left and right]. 
 
A binary tree is a tree with the following 
properties: 

 Each internal node has at most two 
children (left child and right child) 

 The children of a node are an ordered 
pair (left and right) 

 

 
 

 

 

 

https://www.programiz.com/dsa/binary-tree


Applications of Binary Tree 
1. To build Arithmetic Expression Tree 
2. To build Decision Tree 

Binary tree associated with an arithmetic 
expression 

◾ internal nodes: operators 
◾ external nodes: operands 

Example : arithmetic tree for the expression :  
                (2 X (a - 1) + (3 X b)) 

 
Binary tree associated with a decision process 

◾ internal nodes: questions with 
yes/no answer 

◾ external nodes: decisions 
Example: dining decision 

 

Proper Binary Trees 

Each internal node has exactly 2 
children 
 

 
◾ n :number of total nodes 
◾ e :number of external nodes 
◾ i :number of internal nodes 
◾ h :height (maximum depth of a node) 

 

Properties: 
1. e = i + 1 
2. n = 2e - 1 
3. h <=i 
4. h <= (n - 1)/2 

5. e <= 2h 
6. h >= log2 e 
7. h >= log2 (n + 1) - 1 

 



from the two tress:  
n = 7 , e = 4 , i = 3, h=2 

 e = i + 1  
 n = 2e - 1 
 h <=i 
 h <= (n - 1)/2 

 5. e <= 2h 
 6. h >= log2 e=2 
 7. h >= log2 (n + 1) – 1=2 

 
 

 

Binary Tree Representations 

     A binary tree data structure is represented using two methods. Those methods are as 
follows : 

1. Array Representation 
2. Linked List Representation 

 
Array Representation  
Consider the following binary tree: 

 
     In array representation of a binary tree, we use one-dimensional array (1-D Array) to 
represent a binary tree. 
Consider the above example of a binary tree and it is represented as follows: 

 
 A[0] is always empty 
 A[i] is empty if there is no node in the ith position 
 The array size N is 2(h+1)  

 
 



Consider the following binary tree: 
 

 
 
Linked List Representation  
     We use a double linked list to represent a binary tree. In a double linked list, every node 
consists of three fields. First field for storing left child address, second for storing actual data 
and third for storing right child address. 
In this linked list representation, a node has the following structure... 

 
The above example of the binary tree represented using Linked list representation is shown as  
follows: 

  
 

 

 

 



 

Operations of Tree 
1. Insert 
2. Delete 
3. Search 
4. Traversal 

 

Tree Traversal 
◾ In order to perform any operation on a tree, you need to reach to the specific node.  
◾ Traversing a tree means visiting every node in the tree.  
◾ The Types of tree traversal are:  

1. inorder 
2.  preorder  
3.  postorder. 

 

Inorder traversal 
 

Pre-order traversal Post-order traversal 

1. 1. visit all the nodes in the left subtree 
2. 2. Visit the root node 
3. 3. Visit all the nodes in the right subtree 

 

1. 1. Visit the root node 
2. 2. Visit all the nodes in the left subtree 
3. 3. Visit all the nodes in the right 

subtree 
 

1. 1. Visit all the nodes in the left subtree 
2. 2. Visit all the nodes in the right subtree 
3. 3. Visit the root node 

 

  

 
Consider the trees below.  

1. What is the preorder traversal of the tree? 
2. What is the inorder traversal of the tree?  
3. What is the postorder traversal of the tree? 

 



 
 

  

 
 

 



 

Graphs 
What is a graph? 

 Graph is a non-linear data structure. It contains a set of points known as nodes (or 
vertices) and a set of links known as edges that relate the nodes to each other. 

 The set of edges describes relationships among the vertices. 

 
Formal   definition of Graphs 
     Generally, a graph G is represented as G = ( V , E ), where V is set of vertices and  
E is set of edges.  In the above figure the following is a graph with 5 vertices and 7 edges. 
 
                  V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. 
 

Directed vs. undirected   graphs 

Directed  Undirected   graphs 
When the edges in a graph 
have a direction, the graph is 
called directed (or digraph) 
 

 Warning: if the graph is directed, the 
order of the vertices in each edge is 
important 

When the edges in a graph have no direction, 
the graph is called undirected 
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Graph terminology 
Adjacent node: two nodes are adjacent if they 
are connected by an edge. 
5 is adjacent to 7 
7 is adjacent from 5 

 

Path: a sequence of edges connect 
a sequence of vertices.  

 

Complete graph: a graph in which every 
vertex is directly connected to every other 
vertex. 

 

 

The number of edges in a complete directed  
graph with N vertices are:         N * (N-1) 

 

The number of edges in a complete undirected  
graph with N vertices are:    N * (N-1) /2 

 

 
Weighted graph: a graph in which each edge 
carries a value. 

 

 
 
 



 

Trees vs graphs 
Trees are special cases of graphs 
 

 
 
 

Graph  Representing 
     The two most common ways of representing graphs are: 
1. Adjacency matrix 
2. Adjacency List 
 
In Adjacency matrix way use array. 

• A  1D array is used to represent the vertices. 
• A 2D array (adjacency matrix) is used to represent the edges. 

 

  

 



 
 

In Adjacency list way use  Linked-list  
• A 1D array is used to represent the vertices 
• A list is used for each vertex v which contains the vertex  which are adjacent 

from v (adjacency list) 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example 
Consider the graphs below. 

Graph1 
Graph2 

 
 
1. Use an adjacency list to represent this graph.  
2. Use an adjacency matrix to represent this graph 

Answer: 
Adjacency matrix Adjacency list 
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Graph   traversal 
     Graph traversal (also known as graph search) refers to the process of visiting 
(checking and/or updating) each vertex in a graph. Such traversals are classified by the 
order in which the vertices are visited. 

There are two graph traversal techniques and they are as follows: 

1. DFS (Depth First Search) 

2. BFS (Breadth First Search) 

DFS (Depth First Search) 
     In DFS traversal, the stack data structure is used, which works on the LIFO (Last In First Out) 
principle. In DFS, traversing can be started from any node, or we can say that any node can be 
considered as a root node. 
     In this algorithm one starting vertex is given, and when an adjacent vertex is found, it moves 
to that adjacent vertex first and try to traverse in the same manner.  
Steps:  
1. Define a Stack 
2. Set current vertex V 
3. Add current vertex V to stack 
4. Print current vertex V  
5. Add any 1 neighbor (unvisited i.e. not in stack previously) of V to stack  
6. If current vertex has all its neighbors already visited, pop it from stack & backtrack 
7. Check remaining vertices in the stack for any unvisited vertices. 
8. Repeat from step 4 till stack empty 

 

Example 1 : What is the possible DFS traversal for this graph? (Start with A). 

 



  
  

  
Stack After backtrack  

 

 

 

 

 

 

 



Example 2: What is the possible DFS traversal for this graph? (Start with 0). 

 

 

     

   

 
 
 

backtrack 

  
  

 
 

 

 

 

 

 

Output : 0 Output : 0 1 3 Output : 0 1 3 2 Output : 0 1 3 2 4 Output : 
 0 1 3 2 4  6 

Output : 0 1 3 2 4  6 Output : 0 1 3 2 4  6 Output : 0 1 3 2 4  6   5 



BFS (Breadth First Search) 

Stands for BFS. It is also known as level order traversal. The Queue data structure is used for the 
Breadth First Search traversal.  
     In this traversal algorithm one node is selected and then all of the adjacent nodes 
are visited one by one. After completing all of the adjacent vertices, it moves further to 
check another vertex and checks its adjacent vertices again.  
Steps: 
1. Define a Queue 
2. Set current vertex V 
3. Add current vertex V to queue 
4. Print current vertex V  
5. Add all neighbors (unvisited i.e. previously not in queue) of V to queue (in any 
order)  
6. Repeat from step 4 till queue empty  

Example 1: What is the possible Breadth First traversal for this graph? (Start with A). 

 

 

 

 

 



 

 

 

 

Example 2: What is the possible Breadth First traversal for this graph? (Start with 0). 

 

 

 



Dijkstra’s Algorithm

1
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Single-Source Shortest Path Problem 

Single-Source Shortest Path Problem - The 
problem of finding shortest paths from a source 
vertex v to all other vertices in the graph.



Applications
- Maps (Map Quest, Google Maps) 
- Routing Systems



Dijkstra's algorithm 
Dijkstra's algorithm - is a solution to the single-source 
shortest path problem in graph theory.

Works on both directed and undirected graphs. However, 
all edges must have nonnegative weights.

Input: Weighted graph G={E,V} and source vertex v∈V, 
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths 
themselves) from a given source vertex v∈V  to all other 
vertices



Approach
• The algorithm computes for each vertex u the distance to u 

from the start vertex v, that is, the weight of a shortest path 
between v and u.

• the algorithm keeps track of the set of vertices for which the 
distance has been computed, called the cloud C

• Every vertex has a label D associated with it. For any vertex u, 
D[u] stores an approximation of the distance between v and 
u. The algorithm will update a D[u] value when it finds a 
shorter path from v to u.

• When a vertex u is added to the cloud, its label D[u] is equal 
to the actual (final) distance between the starting vertex v and 
vertex u.

5



Dijkstra pseudocode
Dijkstra(v1, v2):

for each vertex v:                            // Initialization
v's distance := infinity.
v's previous := none.

v1's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:

dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous := v.

reconstruct path from v2 back to v1,
following previous pointers.

6



Another Example



Another Example



Another Example



Another Example



Another Example



Another Example



Another Example



Another Example



Another Example
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Dijkstra’s Pseudo Code

• Graph G, weight function w, root s

relaxing 
edges
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Example: Initialization

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞ 

∞ ∞ 

∞ 

Pick vertex in List with minimum distance.

∞ ∞ 

Distance(source) = 
0

Distance (all vertices 
but source) = ∞ 
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Example: Initialization

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞ 

∞ ∞ 

∞ 

Pick vertex in List with minimum distance.

∞ ∞ 

Distance(source) = 
0

Distance (all vertices 
but source) = ∞ 
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Example: Update neighbors' 
distance

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞ 

1

∞ ∞ 

Distance(B) = 2
Distance(D) = 1
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Example: Remove vertex with 
minimum distance

Pick vertex in List with minimum distance, i.e., D

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞ 

1

∞ ∞ 
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Example: Update neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Distance(C) = 1 + 2 = 3 
Distance(E) = 1 + 2 = 3 
Distance(F) = 1 + 8 = 9 
Distance(G) = 1 + 4 = 5
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Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex in List with minimum distance (B) and update neighbors

9 5

Note : distance(D) not 
updated since D is 
already known and 
distance(E) not updated 
since it is larger than 
previously computed
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Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5
No updating

Pick vertex List with minimum distance (E) and update neighbors
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Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8
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Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5
Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors
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Example (end)

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (F) and update neighbors

6 5



Time Complexity: Using List
The simplest implementation of the Dijkstra's algorithm 

stores vertices in an ordinary linked list or array
– Good for dense graphs (many edges)

• |V| vertices and |E| edges
• Initialization O(|V|)
• While loop O(|V|)

– Find and remove min distance vertices O(|V|)
• Potentially |E| updates

• Update costs O(1)

Total time O(|V2| + |E|) = O(|V2| )
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Time Complexity: Priority Queue
For sparse graphs, (i.e. graphs with much less than |V2| edges) 

Dijkstra's implemented more efficiently by priority queue

• Initialization O(|V|) using O(|V|) buildHeap
• While loop O(|V|)

• Find and remove min distance vertices O(log |V|)  using O(log |V|) 
deleteMin

• Potentially |E| updates
• Update costs O(log |V|) using decreaseKey

Total time O(|V|log|V| + |E|log|V|) = O(|E|log|V|)
• |V| = O(|E|) assuming a connected graph



 

Maps and Hash Tables 

 
What is Maps? 
     Maps (sometimes called associative arrays) are an abstract data structure (ADT)   

 It stores a collection of (key-value) pairs.  
 Each key is unique and allows for quick access to values.  
 There cannot be duplicate keys. 
 The key is used to decide where to store the value in the structure. In 

other words, the key associated with value can be viewed as the 
address for that value. 

 Maps provide an alternative approach to searching.  
 

Operations on map 
 get(k) : return the value associated with key k if exits in the map 
 put(k,k): map the key k to the value v. 
 remove(k): remove key k  and its value from the map 
 size()Returns the number of elements present in the map 
 isEmpty()method return True if no key-value is present in the map else return false. 

 
Example: suppose  key=integer, value=letter 

Operation M={} 
put(5,A) M={(5,A)} 
put(7,B) M={(5,A), (7,B)} 
put(2,C) M={(5,A), (7,B), (2,C)} 

put(8,D) M={(5,A), (7,B), (2,C), (8,D)} 

put(2,E) M={(5,A), (7,B), (2,E), (8,D)} 

get(7) return B 
get(4) return null 
get(2) return E 
remove(5) M={(7,B), (2,E), (8,D)} 
size() return 3 
isEmpty() return false 
remove(2) M={(7,B), (8,D)} 
get(2) return null 
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Hashing  
     The purpose of hashing is to achieve search, insert and delete an element in complexity O(1) 
[in constant time]. In this technique, convert a range of key values into a range of indexes in the 
hash table by using a hashing function.  

 
Main concepts of hashing  

 The hash table 
 The hash function 

 
Hash Table 
     A hash table is a data structure that provides a mapping from keys to values (also called hash 
values) using a technique called hashing. 

 Keys must be unique but the values may be repeated. 
 We refer to these values as key-values pairs. 
 key-values pairs can be any type as integer, string .., they are need to hashed by using 

hash function. 
 
 Hash function 
A hash function (h(k) ) is a function that maps a key ‘k’ to number in a fixed range. 
 
A good hash function satisfies two basic properties:  

1)  It should be very fast to compute. 
 2) It should reduce (not prevent) the number of collisions. 

 
Notes: The size of the table N and the hash function are decided by the user 

 
In the following different methods to find a good hash function: 

1. Division Method 
If   k is a key and m   is the size of the hash table, the hash function h() is calculated as: 

h(k) = k mode m   (best for m  is prime) 
 
2. Multiplication Method 

h(k) = ⌊m(kA mod 1)⌋    , (best for m = 2n)where 
 k is a key and m   is the size of the hash table  
 ⌊ ⌋ gives the floor value 
 A is any constant. The value of A lies between 0 and 1 

 
 
 



How does Hashing in Data Structure Work? 
 

 
Hash table size 

 By "size" of the hash table we mean how many slots or buckets it has. 
 Choice of hash table size depends in part on choice of hash function, and collision 

resolution strategy.  
 But a good general is: 

[The hash table should be an array with length about 1.3 times the maximum number 
of keys that will actually be in the table, and Size of hash table array should be a prime 
number.] 

 If you underestimate the number of keys, you may have to create a larger table and 
rehash the entries when it gets too full; if you overestimate the number of keys, you will 
be wasting some space 

 
Why prefer table size is prime number? 
     If size of hash table is prime number will produce the most wide-spread distribution of keys 
in hash table. 
    But if it not prime, every key that shares a common factor with the table size will be hashed 
into a value that is a multiple of this factor. 
 
Why use mod in hash function? 
Generally, hash functions calculate an integer value from the key, to ensure this integer value is 
within the length of the hash table. The result will range somewhere from 0 to the table_size-1. 
 

 

 



Hash Collision 

     Hashing in data structure falls into a collision when the hash function generates the same 
location (hash value) for two keys. The collision creates a problem because each location in a 
hash table is supposed to store only one value.  
  
Collision Resolution Techniques 

 It is process of finding an alternate location. 
 The collision resolution techniques can be named as- 

1. Open Hashing (Closed Addressing) 
              Separate Chaining) 

2. Closed Hashing (Open Addressing) 
A. Linear Probing 
B. Quadratic Probing 
C. Double Hashing 

 

Open Hashing - Separate Chaining  
     In chaining, if a hash function produces the same location for multiple elements, these 
elements are stored in the same location by using a linked list. 
Example 1: Use division method and opened hashing (closed addressing)(chaining) to insert the 
elements below into a hash table of size 10 . 
  3, 2, 42, 4, 12, 14,17,13,37   
 

0  

1  

2 2 

3 3 

4 14 

5  

6  

7 17 

8  

9  

Key(k) Location(h(key)) probe 
3 3 % 10   =  3 1 
2 2 % 10   =  2 1 

42 42 % 10 =  2 2 
12 12 % 10 =  2 3 
14 14 % 10 =  4 1 
17 17 % 10 =  7 1 
13 13 % 10 =  3 2 
37 37 % 10 =  7 2 

 

Hash Table 

 

 

 



 

Example 2:  
Use opened hashing (chaining) to insert the elements below into a hash table of size 9. 
  7, 42, 25, 70, 14, 38, 8, 21, 34, 11, 48, 26, 93, 125 
 
 

Open Addressing 
 Unlike chaining, open addressing doesn't store multiple elements into the same location. Here, 
each location is either filled with a single key or left null. 
A. Linear Probing 

     In this technique search the next empty location in the hash table by looking into the next 
location until we find an empty location.  

Probe: The list of locations which a method for open addressing produces as alternatives in 
case of a collision. 

[next location = (collision location) % table_size ,  i=0..table_size-1] 

 
Example 1: Use division method and closed hashing (opened addressing)(Linear Probing) to 
insert the elements below into a hash table of size 10. 

  3, 2, 42, 4, 12, 14,17,13,37   

 

0  

1  

2 2 

3 3 

4 42 

5 12 

6 14 

7 17 

8 13 

9 37 

Key(k) Location(h(key)) probe 
3 3 % 10   =  3 1 
2 2 % 10   =  2 1 

42 42 % 10 =  2 3 
12 12 % 10 =  2 4 
14 14 % 10 =  4 3 
17 17 % 10 =  7 1 
13 13 % 10 =  3 6 
37 37 % 10 =  7 3 

 

Hash Table 



 

Example 2:  
Use closed hashing (Linear Probing) to insert the elements below into a hash table of size 9. 

 7, 42, 25, 70, 14, 38, 8, 21, 34, 11, 48, 26, 93, 125 
 

B. Quadratic Probing 

It works similar to linear probing but the spacing between the location is increased (greater 
than one) by using the following relation: 

[next location = (collision location+i2) % table_size ,  i=0..table_size-1] 
 
Example 1: Use division method and closed hashing (opened addressing)( Quadratic Probing) to 
insert the elements below into a hash table of size 10. 

  3, 2, 42, 4, 12, 14,17,13,37   

 

0 12 

1  

2 2 

3 3 

4 14 

5  

6 42 

7 17 

8 37 

9 13 

 
 
Example 2:  
Use closed hashing (Linear Probing) to insert the elements below into a hash table of size 9. 

 7, 42, 25, 70, 14, 38, 8, 21, 34, 11, 48, 26, 93, 125 

Key(k) Location(h(key)) probe 
3 3 % 10   =  3 1 
2 2 % 10   =  2 1 

42 42 % 10 =  2 3 
12 12 % 10 =  2 4 
14 14 % 10 =  4 1 
17 17 % 10 =  7 1 
13 13 % 10 =  3 5 
37 37 % 10 =  7 2 

 

Hash Table 
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Heap Data Structure 
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MAX Heap, and Heap Sort 
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Heap Data Structure in Detail (with Java Examples) 

1. What is a Heap? 

A Heap is a specialized tree-based data structure that satisfies the heap property. 

It is commonly implemented as a binary heap, which is a complete binary tree 

where elements follow a specific order. 

There are two types of heaps: 

1. Min Heap – The parent node is always smaller than its children. 

2. Max Heap – The parent node is always greater than its children. 

2. Properties of a Heap 

• Complete Binary Tree: All levels are filled except possibly the last one. 

• Heap Property:  

o Min Heap: Parent node ≤ Child nodes. 

o Max Heap: Parent node ≥ Child nodes. 

• Efficient Operations:  

o Insertion: O(log n) 

o Deletion (Extract Root): O(\log n) 

o Heapify (Rearranging Heap): O(\log n) 

o Building Heap: O(n)O(n) 
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3. Representation of Heap in Array 

A heap can be represented as an array where: 

• For index i: 

o Parent: (𝒊 −  𝟏) / 𝟐 

o Left Child: 𝟐 ∗  𝒊 +  𝟏 

o Right Child: 𝟐 ∗  𝒊 +  𝟐 

Q: Consider the elements given below.  

35, 33, 42, 10, 14, 19, 27, 44, 26, 31  

1. Construct a min-heap (as a tree) from the above elements. Then show how the 

heap will be stored in the array.  

Tree:  
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Array: 

10  14  19  26  31  42  27  44  35  33  

 

2. Construct a max-heap (as a tree) from the above elements. Then show how the 

heap will be stored in the array.  

Tree  

 

Array: 

 44  42  35  33  31  19  27  10  26  14  
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4. Heap Operations 

A. Insertion in Heap 

1. Insert the element at the last available position. 

2. Compare with the parent. 

3. Swap if needed (heapify-up or percolate-up). 

4. Repeat until the heap property is restored. 

B. Deletion (Extract Min / Max) 

1. Remove the root element. 

2. Replace it with the last element. 

3. Heapify down (compare with children and swap accordingly). 

4. Repeat until the heap property is restored. 

 
Add and remove elements to heap 

 Add 4 to Max heap 

 
 Add 4 to Min heap 
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 Remove from max heap 

 
 

 

 Remove from min heap 

 

 

6. Heap Sort Algorithm 

Heap Sort is a comparison-based sorting algorithm that uses a heap to sort 

elements. 

Steps for Heap Sort 

1. Build a Max Heap from the array. 

2. Swap the root element (largest) with the last element. 

3. Reduce heap size and apply happify-down. 

4. Repeat until the array is sorted. 
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 Applications of Heap 

• Priority Queues: Used in scheduling algorithms. 

• Graph Algorithms: Dijkstra’s shortest path, Prim’s MST. 

• Heap Sort: Efficient sorting algorithm. 

• Job Scheduling: Managing task execution based on priority. 

• Memory Management: Heap memory allocation in programming 

languages. 

 

7. Time Complexity Analysis 

Operation Time Complexity 

Insert O(log n) 

Delete (Extract) O(log n) 

Get Min/Max O(1) 

Build Heap O(n) 

 

 



Pattern matching 

What is pattern matching? 

      Pattern matching is the process of checking whether a specific sequence of characters exists 
among the given data. In the classic pattern-matching problem, we are given a text string of 
length n and a pattern string of length m (where m ≤ n), and must determine whether the 
pattern is a substring of the text. If so, we may want to find the lowest index within the text at 
which the pattern begins, or perhaps all indices at which the pattern begins.  In the following 
three pattern-matching algorithms: 

▪ brute force 

▪ The Boyer-Moore Algorithm 

▪ The Knuth-Morris-Pratt Algorithm 

Brute Force 

     A brute force algorithm will try all possible solutions to the problem, only stopping when it 

finds one that is the actual solution. This can be time-consuming but it is effective in finding 

short-term solutions to difficult problems.  

An implementation of the Boyer-Moore algorithm:

 

Performance 

    The complexity of the brute force algorithm will be n*m, where “n” is the length of the text 

string and “m” is the length if the pattern at the worst case. 

 



 

 The algorithm performs 27 character comparisons, indicated above with numerical labels. 

 

 



The Boyer-Moore Algorithm 

     The main idea of the Boyer-Moore algorithm is to improve the running time of the brute-

force algorithm by adding two potentially time-saving heuristics. Roughly stated, these 

heuristics are as follows:  

 

 
 

An implementation of the Boyer-Moore algorithm:

 

 



 
 

How compute Bad Match Table(BMT)? 

 

▪ Pattern of size m 

▪ BMT must be does not contain any repetitive characters 

▪ Iterate over the pattern and compute the values of BMT from the : 

Max(1,m-i-1), I  is the actual index of the character in the pattern 

 

Examples: 

 

 
 

 

Performance 

     In the worst-case the performance of the Boyer-Moore algorithm is O(mn), where m is the 

length of the substring and n is the length of the string. 

 

 

 



Example 

 

 
 

The algorithm performs 13 character comparisons, which are indicated with numerical labels. 

 

 

 

 

 

 



The Knuth-Morris-Pratt Algorithm 

     KMP algorithm is used to find a "Pattern" in a "Text". This algorithm compares character by 

character from left to right. But whenever a mismatch occurs, it uses a preprocessed table 

called "Prefix Table" to skip characters comparison while matching. Sometimes prefix table is 

also known as LPS Table. Here LPS stands for "Longest proper Prefix which is also Suffix". 

Steps for Creating LPS Table (Prefix Table) 

• Step 1 - Define a one dimensional array with the size equal to the length of the Pattern. 
(LPS[size]) 

• Step 2 - Define variables i & j. Set i = 0, j = 1 and LPS[0] = 0. 
• Step 3 - Compare the characters at Pattern[i] and Pattern[j]. 
• Step 4 - If both are matched then set LPS[j] = i+1 and increment both i & j values by one. 

Goto to Step 3. 
• Step 5 - If both are not matched then check the value of variable 'i'. If it is '0' then 

set LPS[j] = 0 and increment 'j' value by one, if it is not '0' then set i = LPS[i-1]. Goto Step 
3. 

• Step 6- Repeat above steps until all the values of LPS[] are filled. 



 



How to use LPS Table? 

     We use the LPS table to decide how many characters are to be skipped for comparison when 
a mismatch has occurred. 
     When a mismatch occurs, check the LPS value of the previous character of the mismatched 
character in the pattern. If it is '0' then start comparing the first character of the pattern with 
the next character to the mismatched character in the text. If it is not '0' then start comparing 
the character which is at an index value equal to the LPS value of the previous character to the 
mismatched character in pattern with the mismatched character in the Text. 
 
How the KMP Algorithm Works? 

Let us see a working example of KMP Algorithm to find a Pattern in a Text... 



 

 



 

An implementation of the Knuth-Morris-Pratt Algorithm: 

 

Performance 

     The Knuth-Morris-Pratt algorithm performs pattern matching on a text string of length n and 
a pattern string of length m in O(n+m) time.    

Example1: Given a string Text and pattern  as follows: 

 
 

 

The primary algorithm performs 19 character comparisons, which are indicated with numerical 

labels. 



Example2: Given a string 'T' and pattern 'P' as follows: 

 
 

n = size of T = 15  and m = size of P = 7

 



 



 

 



 

 

Pattern 'P' has been found to complexity occur in a string 'T.' The total number of shifts that 
took place for the match to be found is i-m = 13 - 7 = 6 shifts. 

 

 

 

 


