Republic of Iraq

Ministry of Higher Education and Scientific Research Supervision and Scientific Evaluation Apparatus

University: Shatt Al-Arab University College: Engineering College Department: Civil Engineering

Stage: 2nd stage

Lecturer name: Nabil Najem AlHamdani Academic title: Lecturer

Course Weekly Outline

Name	Mr.Nabil Najem AlHamdani				
E-mail address	nabil.najm@sa-uc.edu.iq				
Course name	Applied Mathematics				
Course objective	The course aims to provide principles about Polar coordinates, Vectors, Partial derivatives, Double and triple integration, Series and their engineering applications.				
Course description	 Knowledge and Understanding 1- Understanding polar coordinates and their relation to Cartesian coordinates and their applications. 2- Studying vectors and use them to study the analytic geometry of space with their important applications in engineering. 3- Studying different types of series and their applications in solving different engineering and mathematical problems 4- Using partial differentiation in deriving different surface equations, rate of change, optimization problem and estimation of change. 5- Studying and using multiple integral and their applications in civil engineering such as determining areas, volumes, center of masses and moments of inertia. 				
References	Thomas' Calculus, George B. Thomas				
External sources	Calculus, Edwin Herman and Gilbert Strang				
Course assessment	Lab.	Quizzes and assessment	Mid-term exam	Final exam	
		40	10	50	
General notes		1	1		

Republic of Iraq

Ministry of Higher Education and Scientific Research Supervision and Scientific Evaluation Apparatus

University: Shatt Al-Arab University College: Engineering College Department: Civil Engineering

Stage: 2nd stage

Lecturer name: Nabil Najem AlHamdani Academic title: Lecturer

Course Weekly Outline

Week No.	Theoretical	Experimental	Aims
1	Definition of Polar Coordinates, Polar Equations and		and
	Graphs, Relating Polar and Cartesian Coordinates, Graphing		le a
	Polar Coordinate Equations		oub
2	Areas and Lengths in Polar Coordinates		Vectors, Partial derivatives, Double
3	Vectors and the Geometry of Space, Component Form and		ative
	Vector Algebra Operations		leriv
4	Unit Vectors, Midpoint of a Line Segment, Navigation,		ial d
	forces action on a single object		Parti
5	The Dot Product, Angle Between Vectors, orthogonal		JIS, J
	Vectors, work and Vector Projections		/ectc
	The Cross Product, Calculating the Cross Product as a		N, V
6	determinant, Area of a Parallelogram and Torque, Lines		inate
	and Planes in Space		oord ons.
7	Infinite Sequences and Series, Infinite Series, Taylor and		ar co icati
	Maclaurin Series,		Polar coord applications
8	Power Series, The Binomial Series and Applications of		ing
	Taylor Series		ciples about engineering
9	Partial Derivatives, Limits and Continuity in Higher		ciple engi
	Dimensions, Partial Derivatives of a Function of Two and		vide prine and their
	Three Variables Second-Order and higher Partial		ide nd tj
	Derivatives.		es
10	The Chain Rule, Directional Derivatives and Gradient		to Sej
	Vectors, Tangent Planes and Differentials, Estimating		aims tion,
	Change in a Specific Direction		rse a
11	Extreme Values and Saddle Points, optimization		The course aims triple integration,
12	Double Integrals in Cartesian and Polar Form, Area by		The tripl

	Double Integration	
13	Triple Integrals, Area, volume, centroid and moment of inertia	
14	Triple Integrals in Cylindrical and Spherical Coordinates	
15	Preparatory week before the final Exam	